Mercurial > dropbear
view libtommath/bn_mp_sqrtmod_prime.c @ 1790:42745af83b7d
Introduce extra delay before closing unauthenticated sessions
To make it harder for attackers, introduce a delay to keep an
unauthenticated session open a bit longer, thus blocking a connection
slot until after the delay.
Without this, while there is a limit on the amount of attempts an attacker
can make at the same time (MAX_UNAUTH_PER_IP), the time taken by dropbear to
handle one attempt is still short and thus for each of the allowed parallel
attempts many attempts can be chained one after the other. The attempt rate
is then:
"MAX_UNAUTH_PER_IP / <process time of one attempt>".
With the delay, this rate becomes:
"MAX_UNAUTH_PER_IP / UNAUTH_CLOSE_DELAY".
author | Thomas De Schampheleire <thomas.de_schampheleire@nokia.com> |
---|---|
date | Wed, 15 Feb 2017 13:53:04 +0100 |
parents | 1051e4eea25a |
children |
line wrap: on
line source
#include "tommath_private.h" #ifdef BN_MP_SQRTMOD_PRIME_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* Tonelli-Shanks algorithm * https://en.wikipedia.org/wiki/Tonelli%E2%80%93Shanks_algorithm * https://gmplib.org/list-archives/gmp-discuss/2013-April/005300.html * */ mp_err mp_sqrtmod_prime(const mp_int *n, const mp_int *prime, mp_int *ret) { mp_err err; int legendre; mp_int t1, C, Q, S, Z, M, T, R, two; mp_digit i; /* first handle the simple cases */ if (mp_cmp_d(n, 0uL) == MP_EQ) { mp_zero(ret); return MP_OKAY; } if (mp_cmp_d(prime, 2uL) == MP_EQ) return MP_VAL; /* prime must be odd */ if ((err = mp_kronecker(n, prime, &legendre)) != MP_OKAY) return err; if (legendre == -1) return MP_VAL; /* quadratic non-residue mod prime */ if ((err = mp_init_multi(&t1, &C, &Q, &S, &Z, &M, &T, &R, &two, NULL)) != MP_OKAY) { return err; } /* SPECIAL CASE: if prime mod 4 == 3 * compute directly: err = n^(prime+1)/4 mod prime * Handbook of Applied Cryptography algorithm 3.36 */ if ((err = mp_mod_d(prime, 4uL, &i)) != MP_OKAY) goto cleanup; if (i == 3u) { if ((err = mp_add_d(prime, 1uL, &t1)) != MP_OKAY) goto cleanup; if ((err = mp_div_2(&t1, &t1)) != MP_OKAY) goto cleanup; if ((err = mp_div_2(&t1, &t1)) != MP_OKAY) goto cleanup; if ((err = mp_exptmod(n, &t1, prime, ret)) != MP_OKAY) goto cleanup; err = MP_OKAY; goto cleanup; } /* NOW: Tonelli-Shanks algorithm */ /* factor out powers of 2 from prime-1, defining Q and S as: prime-1 = Q*2^S */ if ((err = mp_copy(prime, &Q)) != MP_OKAY) goto cleanup; if ((err = mp_sub_d(&Q, 1uL, &Q)) != MP_OKAY) goto cleanup; /* Q = prime - 1 */ mp_zero(&S); /* S = 0 */ while (MP_IS_EVEN(&Q)) { if ((err = mp_div_2(&Q, &Q)) != MP_OKAY) goto cleanup; /* Q = Q / 2 */ if ((err = mp_add_d(&S, 1uL, &S)) != MP_OKAY) goto cleanup; /* S = S + 1 */ } /* find a Z such that the Legendre symbol (Z|prime) == -1 */ mp_set_u32(&Z, 2u); /* Z = 2 */ for (;;) { if ((err = mp_kronecker(&Z, prime, &legendre)) != MP_OKAY) goto cleanup; if (legendre == -1) break; if ((err = mp_add_d(&Z, 1uL, &Z)) != MP_OKAY) goto cleanup; /* Z = Z + 1 */ } if ((err = mp_exptmod(&Z, &Q, prime, &C)) != MP_OKAY) goto cleanup; /* C = Z ^ Q mod prime */ if ((err = mp_add_d(&Q, 1uL, &t1)) != MP_OKAY) goto cleanup; if ((err = mp_div_2(&t1, &t1)) != MP_OKAY) goto cleanup; /* t1 = (Q + 1) / 2 */ if ((err = mp_exptmod(n, &t1, prime, &R)) != MP_OKAY) goto cleanup; /* R = n ^ ((Q + 1) / 2) mod prime */ if ((err = mp_exptmod(n, &Q, prime, &T)) != MP_OKAY) goto cleanup; /* T = n ^ Q mod prime */ if ((err = mp_copy(&S, &M)) != MP_OKAY) goto cleanup; /* M = S */ mp_set_u32(&two, 2u); for (;;) { if ((err = mp_copy(&T, &t1)) != MP_OKAY) goto cleanup; i = 0; for (;;) { if (mp_cmp_d(&t1, 1uL) == MP_EQ) break; if ((err = mp_exptmod(&t1, &two, prime, &t1)) != MP_OKAY) goto cleanup; i++; } if (i == 0u) { if ((err = mp_copy(&R, ret)) != MP_OKAY) goto cleanup; err = MP_OKAY; goto cleanup; } if ((err = mp_sub_d(&M, i, &t1)) != MP_OKAY) goto cleanup; if ((err = mp_sub_d(&t1, 1uL, &t1)) != MP_OKAY) goto cleanup; if ((err = mp_exptmod(&two, &t1, prime, &t1)) != MP_OKAY) goto cleanup; /* t1 = 2 ^ (M - i - 1) */ if ((err = mp_exptmod(&C, &t1, prime, &t1)) != MP_OKAY) goto cleanup; /* t1 = C ^ (2 ^ (M - i - 1)) mod prime */ if ((err = mp_sqrmod(&t1, prime, &C)) != MP_OKAY) goto cleanup; /* C = (t1 * t1) mod prime */ if ((err = mp_mulmod(&R, &t1, prime, &R)) != MP_OKAY) goto cleanup; /* R = (R * t1) mod prime */ if ((err = mp_mulmod(&T, &C, prime, &T)) != MP_OKAY) goto cleanup; /* T = (T * C) mod prime */ mp_set(&M, i); /* M = i */ } cleanup: mp_clear_multi(&t1, &C, &Q, &S, &Z, &M, &T, &R, &two, NULL); return err; } #endif