view libtommath/bn_s_mp_exptmod_fast.c @ 1790:42745af83b7d

Introduce extra delay before closing unauthenticated sessions To make it harder for attackers, introduce a delay to keep an unauthenticated session open a bit longer, thus blocking a connection slot until after the delay. Without this, while there is a limit on the amount of attempts an attacker can make at the same time (MAX_UNAUTH_PER_IP), the time taken by dropbear to handle one attempt is still short and thus for each of the allowed parallel attempts many attempts can be chained one after the other. The attempt rate is then: "MAX_UNAUTH_PER_IP / <process time of one attempt>". With the delay, this rate becomes: "MAX_UNAUTH_PER_IP / UNAUTH_CLOSE_DELAY".
author Thomas De Schampheleire <thomas.de_schampheleire@nokia.com>
date Wed, 15 Feb 2017 13:53:04 +0100
parents 1051e4eea25a
children
line wrap: on
line source

#include "tommath_private.h"
#ifdef BN_S_MP_EXPTMOD_FAST_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */

/* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85
 *
 * Uses a left-to-right k-ary sliding window to compute the modular exponentiation.
 * The value of k changes based on the size of the exponent.
 *
 * Uses Montgomery or Diminished Radix reduction [whichever appropriate]
 */

#ifdef MP_LOW_MEM
#   define TAB_SIZE 32
#   define MAX_WINSIZE 5
#else
#   define TAB_SIZE 256
#   define MAX_WINSIZE 0
#endif

mp_err s_mp_exptmod_fast(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode)
{
   mp_int  M[TAB_SIZE], res;
   mp_digit buf, mp;
   int     bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
   mp_err   err;

   /* use a pointer to the reduction algorithm.  This allows us to use
    * one of many reduction algorithms without modding the guts of
    * the code with if statements everywhere.
    */
   mp_err(*redux)(mp_int *x, const mp_int *n, mp_digit rho);

   /* find window size */
   x = mp_count_bits(X);
   if (x <= 7) {
      winsize = 2;
   } else if (x <= 36) {
      winsize = 3;
   } else if (x <= 140) {
      winsize = 4;
   } else if (x <= 450) {
      winsize = 5;
   } else if (x <= 1303) {
      winsize = 6;
   } else if (x <= 3529) {
      winsize = 7;
   } else {
      winsize = 8;
   }

   winsize = MAX_WINSIZE ? MP_MIN(MAX_WINSIZE, winsize) : winsize;

   /* init M array */
   /* init first cell */
   if ((err = mp_init_size(&M[1], P->alloc)) != MP_OKAY) {
      return err;
   }

   /* now init the second half of the array */
   for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
      if ((err = mp_init_size(&M[x], P->alloc)) != MP_OKAY) {
         for (y = 1<<(winsize-1); y < x; y++) {
            mp_clear(&M[y]);
         }
         mp_clear(&M[1]);
         return err;
      }
   }

   /* determine and setup reduction code */
   if (redmode == 0) {
      if (MP_HAS(MP_MONTGOMERY_SETUP)) {
         /* now setup montgomery  */
         if ((err = mp_montgomery_setup(P, &mp)) != MP_OKAY)      goto LBL_M;
      } else {
         err = MP_VAL;
         goto LBL_M;
      }

      /* automatically pick the comba one if available (saves quite a few calls/ifs) */
      if (MP_HAS(S_MP_MONTGOMERY_REDUCE_FAST) &&
          (((P->used * 2) + 1) < MP_WARRAY) &&
          (P->used < MP_MAXFAST)) {
         redux = s_mp_montgomery_reduce_fast;
      } else if (MP_HAS(MP_MONTGOMERY_REDUCE)) {
         /* use slower baseline Montgomery method */
         redux = mp_montgomery_reduce;
      } else {
         err = MP_VAL;
         goto LBL_M;
      }
   } else if (redmode == 1) {
      if (MP_HAS(MP_DR_SETUP) && MP_HAS(MP_DR_REDUCE)) {
         /* setup DR reduction for moduli of the form B**k - b */
         mp_dr_setup(P, &mp);
         redux = mp_dr_reduce;
      } else {
         err = MP_VAL;
         goto LBL_M;
      }
   } else if (MP_HAS(MP_REDUCE_2K_SETUP) && MP_HAS(MP_REDUCE_2K)) {
      /* setup DR reduction for moduli of the form 2**k - b */
      if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY)          goto LBL_M;
      redux = mp_reduce_2k;
   } else {
      err = MP_VAL;
      goto LBL_M;
   }

   /* setup result */
   if ((err = mp_init_size(&res, P->alloc)) != MP_OKAY)           goto LBL_M;

   /* create M table
    *

    *
    * The first half of the table is not computed though accept for M[0] and M[1]
    */

   if (redmode == 0) {
      if (MP_HAS(MP_MONTGOMERY_CALC_NORMALIZATION)) {
         /* now we need R mod m */
         if ((err = mp_montgomery_calc_normalization(&res, P)) != MP_OKAY) goto LBL_RES;

         /* now set M[1] to G * R mod m */
         if ((err = mp_mulmod(G, &res, P, &M[1])) != MP_OKAY)     goto LBL_RES;
      } else {
         err = MP_VAL;
         goto LBL_RES;
      }
   } else {
      mp_set(&res, 1uL);
      if ((err = mp_mod(G, P, &M[1])) != MP_OKAY)                 goto LBL_RES;
   }

   /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
   if ((err = mp_copy(&M[1], &M[(size_t)1 << (winsize - 1)])) != MP_OKAY) goto LBL_RES;

   for (x = 0; x < (winsize - 1); x++) {
      if ((err = mp_sqr(&M[(size_t)1 << (winsize - 1)], &M[(size_t)1 << (winsize - 1)])) != MP_OKAY) goto LBL_RES;
      if ((err = redux(&M[(size_t)1 << (winsize - 1)], P, mp)) != MP_OKAY) goto LBL_RES;
   }

   /* create upper table */
   for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
      if ((err = mp_mul(&M[x - 1], &M[1], &M[x])) != MP_OKAY)     goto LBL_RES;
      if ((err = redux(&M[x], P, mp)) != MP_OKAY)                 goto LBL_RES;
   }

   /* set initial mode and bit cnt */
   mode   = 0;
   bitcnt = 1;
   buf    = 0;
   digidx = X->used - 1;
   bitcpy = 0;
   bitbuf = 0;

   for (;;) {
      /* grab next digit as required */
      if (--bitcnt == 0) {
         /* if digidx == -1 we are out of digits so break */
         if (digidx == -1) {
            break;
         }
         /* read next digit and reset bitcnt */
         buf    = X->dp[digidx--];
         bitcnt = (int)MP_DIGIT_BIT;
      }

      /* grab the next msb from the exponent */
      y     = (mp_digit)(buf >> (MP_DIGIT_BIT - 1)) & 1uL;
      buf <<= (mp_digit)1;

      /* if the bit is zero and mode == 0 then we ignore it
       * These represent the leading zero bits before the first 1 bit
       * in the exponent.  Technically this opt is not required but it
       * does lower the # of trivial squaring/reductions used
       */
      if ((mode == 0) && (y == 0)) {
         continue;
      }

      /* if the bit is zero and mode == 1 then we square */
      if ((mode == 1) && (y == 0)) {
         if ((err = mp_sqr(&res, &res)) != MP_OKAY)               goto LBL_RES;
         if ((err = redux(&res, P, mp)) != MP_OKAY)               goto LBL_RES;
         continue;
      }

      /* else we add it to the window */
      bitbuf |= (y << (winsize - ++bitcpy));
      mode    = 2;

      if (bitcpy == winsize) {
         /* ok window is filled so square as required and multiply  */
         /* square first */
         for (x = 0; x < winsize; x++) {
            if ((err = mp_sqr(&res, &res)) != MP_OKAY)            goto LBL_RES;
            if ((err = redux(&res, P, mp)) != MP_OKAY)            goto LBL_RES;
         }

         /* then multiply */
         if ((err = mp_mul(&res, &M[bitbuf], &res)) != MP_OKAY)   goto LBL_RES;
         if ((err = redux(&res, P, mp)) != MP_OKAY)               goto LBL_RES;

         /* empty window and reset */
         bitcpy = 0;
         bitbuf = 0;
         mode   = 1;
      }
   }

   /* if bits remain then square/multiply */
   if ((mode == 2) && (bitcpy > 0)) {
      /* square then multiply if the bit is set */
      for (x = 0; x < bitcpy; x++) {
         if ((err = mp_sqr(&res, &res)) != MP_OKAY)               goto LBL_RES;
         if ((err = redux(&res, P, mp)) != MP_OKAY)               goto LBL_RES;

         /* get next bit of the window */
         bitbuf <<= 1;
         if ((bitbuf & (1 << winsize)) != 0) {
            /* then multiply */
            if ((err = mp_mul(&res, &M[1], &res)) != MP_OKAY)     goto LBL_RES;
            if ((err = redux(&res, P, mp)) != MP_OKAY)            goto LBL_RES;
         }
      }
   }

   if (redmode == 0) {
      /* fixup result if Montgomery reduction is used
       * recall that any value in a Montgomery system is
       * actually multiplied by R mod n.  So we have
       * to reduce one more time to cancel out the factor
       * of R.
       */
      if ((err = redux(&res, P, mp)) != MP_OKAY)                  goto LBL_RES;
   }

   /* swap res with Y */
   mp_exch(&res, Y);
   err = MP_OKAY;
LBL_RES:
   mp_clear(&res);
LBL_M:
   mp_clear(&M[1]);
   for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
      mp_clear(&M[x]);
   }
   return err;
}
#endif