Mercurial > dropbear
view libtommath/bn_s_mp_invmod_fast.c @ 1790:42745af83b7d
Introduce extra delay before closing unauthenticated sessions
To make it harder for attackers, introduce a delay to keep an
unauthenticated session open a bit longer, thus blocking a connection
slot until after the delay.
Without this, while there is a limit on the amount of attempts an attacker
can make at the same time (MAX_UNAUTH_PER_IP), the time taken by dropbear to
handle one attempt is still short and thus for each of the allowed parallel
attempts many attempts can be chained one after the other. The attempt rate
is then:
"MAX_UNAUTH_PER_IP / <process time of one attempt>".
With the delay, this rate becomes:
"MAX_UNAUTH_PER_IP / UNAUTH_CLOSE_DELAY".
author | Thomas De Schampheleire <thomas.de_schampheleire@nokia.com> |
---|---|
date | Wed, 15 Feb 2017 13:53:04 +0100 |
parents | 1051e4eea25a |
children |
line wrap: on
line source
#include "tommath_private.h" #ifdef BN_S_MP_INVMOD_FAST_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* computes the modular inverse via binary extended euclidean algorithm, * that is c = 1/a mod b * * Based on slow invmod except this is optimized for the case where b is * odd as per HAC Note 14.64 on pp. 610 */ mp_err s_mp_invmod_fast(const mp_int *a, const mp_int *b, mp_int *c) { mp_int x, y, u, v, B, D; mp_sign neg; mp_err err; /* 2. [modified] b must be odd */ if (MP_IS_EVEN(b)) { return MP_VAL; } /* init all our temps */ if ((err = mp_init_multi(&x, &y, &u, &v, &B, &D, NULL)) != MP_OKAY) { return err; } /* x == modulus, y == value to invert */ if ((err = mp_copy(b, &x)) != MP_OKAY) goto LBL_ERR; /* we need y = |a| */ if ((err = mp_mod(a, b, &y)) != MP_OKAY) goto LBL_ERR; /* if one of x,y is zero return an error! */ if (MP_IS_ZERO(&x) || MP_IS_ZERO(&y)) { err = MP_VAL; goto LBL_ERR; } /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */ if ((err = mp_copy(&x, &u)) != MP_OKAY) goto LBL_ERR; if ((err = mp_copy(&y, &v)) != MP_OKAY) goto LBL_ERR; mp_set(&D, 1uL); top: /* 4. while u is even do */ while (MP_IS_EVEN(&u)) { /* 4.1 u = u/2 */ if ((err = mp_div_2(&u, &u)) != MP_OKAY) goto LBL_ERR; /* 4.2 if B is odd then */ if (MP_IS_ODD(&B)) { if ((err = mp_sub(&B, &x, &B)) != MP_OKAY) goto LBL_ERR; } /* B = B/2 */ if ((err = mp_div_2(&B, &B)) != MP_OKAY) goto LBL_ERR; } /* 5. while v is even do */ while (MP_IS_EVEN(&v)) { /* 5.1 v = v/2 */ if ((err = mp_div_2(&v, &v)) != MP_OKAY) goto LBL_ERR; /* 5.2 if D is odd then */ if (MP_IS_ODD(&D)) { /* D = (D-x)/2 */ if ((err = mp_sub(&D, &x, &D)) != MP_OKAY) goto LBL_ERR; } /* D = D/2 */ if ((err = mp_div_2(&D, &D)) != MP_OKAY) goto LBL_ERR; } /* 6. if u >= v then */ if (mp_cmp(&u, &v) != MP_LT) { /* u = u - v, B = B - D */ if ((err = mp_sub(&u, &v, &u)) != MP_OKAY) goto LBL_ERR; if ((err = mp_sub(&B, &D, &B)) != MP_OKAY) goto LBL_ERR; } else { /* v - v - u, D = D - B */ if ((err = mp_sub(&v, &u, &v)) != MP_OKAY) goto LBL_ERR; if ((err = mp_sub(&D, &B, &D)) != MP_OKAY) goto LBL_ERR; } /* if not zero goto step 4 */ if (!MP_IS_ZERO(&u)) { goto top; } /* now a = C, b = D, gcd == g*v */ /* if v != 1 then there is no inverse */ if (mp_cmp_d(&v, 1uL) != MP_EQ) { err = MP_VAL; goto LBL_ERR; } /* b is now the inverse */ neg = a->sign; while (D.sign == MP_NEG) { if ((err = mp_add(&D, b, &D)) != MP_OKAY) goto LBL_ERR; } /* too big */ while (mp_cmp_mag(&D, b) != MP_LT) { if ((err = mp_sub(&D, b, &D)) != MP_OKAY) goto LBL_ERR; } mp_exch(&D, c); c->sign = neg; err = MP_OKAY; LBL_ERR: mp_clear_multi(&x, &y, &u, &v, &B, &D, NULL); return err; } #endif