Mercurial > dropbear
view libtommath/bn_s_mp_montgomery_reduce_fast.c @ 1790:42745af83b7d
Introduce extra delay before closing unauthenticated sessions
To make it harder for attackers, introduce a delay to keep an
unauthenticated session open a bit longer, thus blocking a connection
slot until after the delay.
Without this, while there is a limit on the amount of attempts an attacker
can make at the same time (MAX_UNAUTH_PER_IP), the time taken by dropbear to
handle one attempt is still short and thus for each of the allowed parallel
attempts many attempts can be chained one after the other. The attempt rate
is then:
"MAX_UNAUTH_PER_IP / <process time of one attempt>".
With the delay, this rate becomes:
"MAX_UNAUTH_PER_IP / UNAUTH_CLOSE_DELAY".
author | Thomas De Schampheleire <thomas.de_schampheleire@nokia.com> |
---|---|
date | Wed, 15 Feb 2017 13:53:04 +0100 |
parents | 1051e4eea25a |
children |
line wrap: on
line source
#include "tommath_private.h" #ifdef BN_S_MP_MONTGOMERY_REDUCE_FAST_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* computes xR**-1 == x (mod N) via Montgomery Reduction * * This is an optimized implementation of montgomery_reduce * which uses the comba method to quickly calculate the columns of the * reduction. * * Based on Algorithm 14.32 on pp.601 of HAC. */ mp_err s_mp_montgomery_reduce_fast(mp_int *x, const mp_int *n, mp_digit rho) { int ix, olduse; mp_err err; mp_word W[MP_WARRAY]; if (x->used > MP_WARRAY) { return MP_VAL; } /* get old used count */ olduse = x->used; /* grow a as required */ if (x->alloc < (n->used + 1)) { if ((err = mp_grow(x, n->used + 1)) != MP_OKAY) { return err; } } /* first we have to get the digits of the input into * an array of double precision words W[...] */ { mp_word *_W; mp_digit *tmpx; /* alias for the W[] array */ _W = W; /* alias for the digits of x*/ tmpx = x->dp; /* copy the digits of a into W[0..a->used-1] */ for (ix = 0; ix < x->used; ix++) { *_W++ = *tmpx++; } /* zero the high words of W[a->used..m->used*2] */ if (ix < ((n->used * 2) + 1)) { MP_ZERO_BUFFER(_W, sizeof(mp_word) * (size_t)(((n->used * 2) + 1) - ix)); } } /* now we proceed to zero successive digits * from the least significant upwards */ for (ix = 0; ix < n->used; ix++) { /* mu = ai * m' mod b * * We avoid a double precision multiplication (which isn't required) * by casting the value down to a mp_digit. Note this requires * that W[ix-1] have the carry cleared (see after the inner loop) */ mp_digit mu; mu = ((W[ix] & MP_MASK) * rho) & MP_MASK; /* a = a + mu * m * b**i * * This is computed in place and on the fly. The multiplication * by b**i is handled by offseting which columns the results * are added to. * * Note the comba method normally doesn't handle carries in the * inner loop In this case we fix the carry from the previous * column since the Montgomery reduction requires digits of the * result (so far) [see above] to work. This is * handled by fixing up one carry after the inner loop. The * carry fixups are done in order so after these loops the * first m->used words of W[] have the carries fixed */ { int iy; mp_digit *tmpn; mp_word *_W; /* alias for the digits of the modulus */ tmpn = n->dp; /* Alias for the columns set by an offset of ix */ _W = W + ix; /* inner loop */ for (iy = 0; iy < n->used; iy++) { *_W++ += (mp_word)mu * (mp_word)*tmpn++; } } /* now fix carry for next digit, W[ix+1] */ W[ix + 1] += W[ix] >> (mp_word)MP_DIGIT_BIT; } /* now we have to propagate the carries and * shift the words downward [all those least * significant digits we zeroed]. */ { mp_digit *tmpx; mp_word *_W, *_W1; /* nox fix rest of carries */ /* alias for current word */ _W1 = W + ix; /* alias for next word, where the carry goes */ _W = W + ++ix; for (; ix < ((n->used * 2) + 1); ix++) { *_W++ += *_W1++ >> (mp_word)MP_DIGIT_BIT; } /* copy out, A = A/b**n * * The result is A/b**n but instead of converting from an * array of mp_word to mp_digit than calling mp_rshd * we just copy them in the right order */ /* alias for destination word */ tmpx = x->dp; /* alias for shifted double precision result */ _W = W + n->used; for (ix = 0; ix < (n->used + 1); ix++) { *tmpx++ = *_W++ & (mp_word)MP_MASK; } /* zero oldused digits, if the input a was larger than * m->used+1 we'll have to clear the digits */ MP_ZERO_DIGITS(tmpx, olduse - ix); } /* set the max used and clamp */ x->used = n->used + 1; mp_clamp(x); /* if A >= m then A = A - m */ if (mp_cmp_mag(x, n) != MP_LT) { return s_mp_sub(x, n, x); } return MP_OKAY; } #endif