view libtommath/bn_s_mp_mul_high_digs.c @ 1790:42745af83b7d

Introduce extra delay before closing unauthenticated sessions To make it harder for attackers, introduce a delay to keep an unauthenticated session open a bit longer, thus blocking a connection slot until after the delay. Without this, while there is a limit on the amount of attempts an attacker can make at the same time (MAX_UNAUTH_PER_IP), the time taken by dropbear to handle one attempt is still short and thus for each of the allowed parallel attempts many attempts can be chained one after the other. The attempt rate is then: "MAX_UNAUTH_PER_IP / <process time of one attempt>". With the delay, this rate becomes: "MAX_UNAUTH_PER_IP / UNAUTH_CLOSE_DELAY".
author Thomas De Schampheleire <thomas.de_schampheleire@nokia.com>
date Wed, 15 Feb 2017 13:53:04 +0100
parents 1051e4eea25a
children
line wrap: on
line source

#include "tommath_private.h"
#ifdef BN_S_MP_MUL_HIGH_DIGS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */

/* multiplies |a| * |b| and does not compute the lower digs digits
 * [meant to get the higher part of the product]
 */
mp_err s_mp_mul_high_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs)
{
   mp_int   t;
   int      pa, pb, ix, iy;
   mp_err   err;
   mp_digit u;
   mp_word  r;
   mp_digit tmpx, *tmpt, *tmpy;

   /* can we use the fast multiplier? */
   if (MP_HAS(S_MP_MUL_HIGH_DIGS_FAST)
       && ((a->used + b->used + 1) < MP_WARRAY)
       && (MP_MIN(a->used, b->used) < MP_MAXFAST)) {
      return s_mp_mul_high_digs_fast(a, b, c, digs);
   }

   if ((err = mp_init_size(&t, a->used + b->used + 1)) != MP_OKAY) {
      return err;
   }
   t.used = a->used + b->used + 1;

   pa = a->used;
   pb = b->used;
   for (ix = 0; ix < pa; ix++) {
      /* clear the carry */
      u = 0;

      /* left hand side of A[ix] * B[iy] */
      tmpx = a->dp[ix];

      /* alias to the address of where the digits will be stored */
      tmpt = &(t.dp[digs]);

      /* alias for where to read the right hand side from */
      tmpy = b->dp + (digs - ix);

      for (iy = digs - ix; iy < pb; iy++) {
         /* calculate the double precision result */
         r       = (mp_word)*tmpt +
                   ((mp_word)tmpx * (mp_word)*tmpy++) +
                   (mp_word)u;

         /* get the lower part */
         *tmpt++ = (mp_digit)(r & (mp_word)MP_MASK);

         /* carry the carry */
         u       = (mp_digit)(r >> (mp_word)MP_DIGIT_BIT);
      }
      *tmpt = u;
   }
   mp_clamp(&t);
   mp_exch(&t, c);
   mp_clear(&t);
   return MP_OKAY;
}
#endif