view libtommath/bn_s_mp_sqr.c @ 1790:42745af83b7d

Introduce extra delay before closing unauthenticated sessions To make it harder for attackers, introduce a delay to keep an unauthenticated session open a bit longer, thus blocking a connection slot until after the delay. Without this, while there is a limit on the amount of attempts an attacker can make at the same time (MAX_UNAUTH_PER_IP), the time taken by dropbear to handle one attempt is still short and thus for each of the allowed parallel attempts many attempts can be chained one after the other. The attempt rate is then: "MAX_UNAUTH_PER_IP / <process time of one attempt>". With the delay, this rate becomes: "MAX_UNAUTH_PER_IP / UNAUTH_CLOSE_DELAY".
author Thomas De Schampheleire <thomas.de_schampheleire@nokia.com>
date Wed, 15 Feb 2017 13:53:04 +0100
parents 1051e4eea25a
children
line wrap: on
line source

#include "tommath_private.h"
#ifdef BN_S_MP_SQR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */

/* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */
mp_err s_mp_sqr(const mp_int *a, mp_int *b)
{
   mp_int   t;
   int      ix, iy, pa;
   mp_err   err;
   mp_word  r;
   mp_digit u, tmpx, *tmpt;

   pa = a->used;
   if ((err = mp_init_size(&t, (2 * pa) + 1)) != MP_OKAY) {
      return err;
   }

   /* default used is maximum possible size */
   t.used = (2 * pa) + 1;

   for (ix = 0; ix < pa; ix++) {
      /* first calculate the digit at 2*ix */
      /* calculate double precision result */
      r = (mp_word)t.dp[2*ix] +
          ((mp_word)a->dp[ix] * (mp_word)a->dp[ix]);

      /* store lower part in result */
      t.dp[ix+ix] = (mp_digit)(r & (mp_word)MP_MASK);

      /* get the carry */
      u           = (mp_digit)(r >> (mp_word)MP_DIGIT_BIT);

      /* left hand side of A[ix] * A[iy] */
      tmpx        = a->dp[ix];

      /* alias for where to store the results */
      tmpt        = t.dp + ((2 * ix) + 1);

      for (iy = ix + 1; iy < pa; iy++) {
         /* first calculate the product */
         r       = (mp_word)tmpx * (mp_word)a->dp[iy];

         /* now calculate the double precision result, note we use
          * addition instead of *2 since it's easier to optimize
          */
         r       = (mp_word)*tmpt + r + r + (mp_word)u;

         /* store lower part */
         *tmpt++ = (mp_digit)(r & (mp_word)MP_MASK);

         /* get carry */
         u       = (mp_digit)(r >> (mp_word)MP_DIGIT_BIT);
      }
      /* propagate upwards */
      while (u != 0uL) {
         r       = (mp_word)*tmpt + (mp_word)u;
         *tmpt++ = (mp_digit)(r & (mp_word)MP_MASK);
         u       = (mp_digit)(r >> (mp_word)MP_DIGIT_BIT);
      }
   }

   mp_clamp(&t);
   mp_exch(&t, b);
   mp_clear(&t);
   return MP_OKAY;
}
#endif