Mercurial > dropbear
view libtommath/bn_mp_exptmod.c @ 1890:45e552ee4391
merge
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Tue, 22 Mar 2022 16:17:47 +0800 |
parents | 1051e4eea25a |
children |
line wrap: on
line source
#include "tommath_private.h" #ifdef BN_MP_EXPTMOD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* this is a shell function that calls either the normal or Montgomery * exptmod functions. Originally the call to the montgomery code was * embedded in the normal function but that wasted alot of stack space * for nothing (since 99% of the time the Montgomery code would be called) */ mp_err mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y) { int dr; /* modulus P must be positive */ if (P->sign == MP_NEG) { return MP_VAL; } /* if exponent X is negative we have to recurse */ if (X->sign == MP_NEG) { mp_int tmpG, tmpX; mp_err err; if (!MP_HAS(MP_INVMOD)) { return MP_VAL; } if ((err = mp_init_multi(&tmpG, &tmpX, NULL)) != MP_OKAY) { return err; } /* first compute 1/G mod P */ if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) { goto LBL_ERR; } /* now get |X| */ if ((err = mp_abs(X, &tmpX)) != MP_OKAY) { goto LBL_ERR; } /* and now compute (1/G)**|X| instead of G**X [X < 0] */ err = mp_exptmod(&tmpG, &tmpX, P, Y); LBL_ERR: mp_clear_multi(&tmpG, &tmpX, NULL); return err; } /* modified diminished radix reduction */ if (MP_HAS(MP_REDUCE_IS_2K_L) && MP_HAS(MP_REDUCE_2K_L) && MP_HAS(S_MP_EXPTMOD) && (mp_reduce_is_2k_l(P) == MP_YES)) { return s_mp_exptmod(G, X, P, Y, 1); } /* is it a DR modulus? default to no */ dr = (MP_HAS(MP_DR_IS_MODULUS) && (mp_dr_is_modulus(P) == MP_YES)) ? 1 : 0; /* if not, is it a unrestricted DR modulus? */ if (MP_HAS(MP_REDUCE_IS_2K) && (dr == 0)) { dr = (mp_reduce_is_2k(P) == MP_YES) ? 2 : 0; } /* if the modulus is odd or dr != 0 use the montgomery method */ if (MP_HAS(S_MP_EXPTMOD_FAST) && (MP_IS_ODD(P) || (dr != 0))) { return s_mp_exptmod_fast(G, X, P, Y, dr); } else if (MP_HAS(S_MP_EXPTMOD)) { /* otherwise use the generic Barrett reduction technique */ return s_mp_exptmod(G, X, P, Y, 0); } else { /* no exptmod for evens */ return MP_VAL; } } #endif