Mercurial > dropbear
view ecdsa.c @ 1902:4a6725ac957c
Revert "Don't include sk keys at all in KEX list"
This reverts git commit f972813ecdc7bb981d25b5a63638bd158f1c8e72.
The sk algorithms need to remain in the sigalgs list so that they
are included in the server-sig-algs ext-info message sent by
the server. RFC8308 for server-sig-algs requires that all algorithms are
listed (though OpenSSH client 8.4p1 tested doesn't require that)
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Thu, 24 Mar 2022 13:42:08 +0800 |
parents | 35d504d59c05 |
children |
line wrap: on
line source
#include "includes.h" #include "dbutil.h" #include "crypto_desc.h" #include "ecc.h" #include "ecdsa.h" #include "signkey.h" #if DROPBEAR_ECDSA int signkey_is_ecdsa(enum signkey_type type) { return type == DROPBEAR_SIGNKEY_ECDSA_NISTP256 || type == DROPBEAR_SIGNKEY_ECDSA_NISTP384 || type == DROPBEAR_SIGNKEY_ECDSA_NISTP521; } enum signkey_type ecdsa_signkey_type(const ecc_key * key) { #if DROPBEAR_ECC_256 if (key->dp == ecc_curve_nistp256.dp) { return DROPBEAR_SIGNKEY_ECDSA_NISTP256; } #endif #if DROPBEAR_ECC_384 if (key->dp == ecc_curve_nistp384.dp) { return DROPBEAR_SIGNKEY_ECDSA_NISTP384; } #endif #if DROPBEAR_ECC_521 if (key->dp == ecc_curve_nistp521.dp) { return DROPBEAR_SIGNKEY_ECDSA_NISTP521; } #endif return DROPBEAR_SIGNKEY_NONE; } ecc_key *gen_ecdsa_priv_key(unsigned int bit_size) { const ltc_ecc_set_type *dp = NULL; /* curve domain parameters */ ecc_key *new_key = NULL; switch (bit_size) { #if DROPBEAR_ECC_256 case 256: dp = ecc_curve_nistp256.dp; break; #endif #if DROPBEAR_ECC_384 case 384: dp = ecc_curve_nistp384.dp; break; #endif #if DROPBEAR_ECC_521 case 521: dp = ecc_curve_nistp521.dp; break; #endif } if (!dp) { dropbear_exit("Key size %d isn't valid. Try " #if DROPBEAR_ECC_256 "256 " #endif #if DROPBEAR_ECC_384 "384 " #endif #if DROPBEAR_ECC_521 "521 " #endif , bit_size); } new_key = m_malloc(sizeof(*new_key)); if (ecc_make_key_ex(NULL, dropbear_ltc_prng, new_key, dp) != CRYPT_OK) { dropbear_exit("ECC error"); } return new_key; } ecc_key *buf_get_ecdsa_pub_key(buffer* buf) { unsigned char *key_ident = NULL, *identifier = NULL; unsigned int key_ident_len, identifier_len; buffer *q_buf = NULL; struct dropbear_ecc_curve **curve; ecc_key *new_key = NULL; /* string "ecdsa-sha2-[identifier]" or "[email protected]" */ key_ident = (unsigned char*)buf_getstring(buf, &key_ident_len); /* string "[identifier]" */ identifier = (unsigned char*)buf_getstring(buf, &identifier_len); if (strcmp (key_ident, "[email protected]") == 0) { if (strcmp (identifier, "nistp256") != 0) { TRACE(("mismatching identifiers")) goto out; } } else { if (key_ident_len != identifier_len + strlen ("ecdsa-sha2-")) { TRACE(("Bad identifier lengths")) goto out; } if (memcmp(&key_ident[strlen ("ecdsa-sha2-")], identifier, identifier_len) != 0) { TRACE(("mismatching identifiers")) goto out; } } for (curve = dropbear_ecc_curves; *curve; curve++) { if (memcmp(identifier, (char*)(*curve)->name, strlen((char*)(*curve)->name)) == 0) { break; } } if (!*curve) { TRACE(("couldn't match ecc curve")) goto out; } /* string Q */ q_buf = buf_getstringbuf(buf); new_key = buf_get_ecc_raw_pubkey(q_buf, *curve); out: m_free(key_ident); m_free(identifier); if (q_buf) { buf_free(q_buf); q_buf = NULL; } TRACE(("leave buf_get_ecdsa_pub_key")) return new_key; } ecc_key *buf_get_ecdsa_priv_key(buffer *buf) { ecc_key *new_key = NULL; TRACE(("enter buf_get_ecdsa_priv_key")) new_key = buf_get_ecdsa_pub_key(buf); if (!new_key) { return NULL; } if (buf_getmpint(buf, new_key->k) != DROPBEAR_SUCCESS) { ecc_free(new_key); m_free(new_key); return NULL; } return new_key; } void buf_put_ecdsa_pub_key(buffer *buf, ecc_key *key) { struct dropbear_ecc_curve *curve = NULL; char key_ident[30]; curve = curve_for_dp(key->dp); snprintf(key_ident, sizeof(key_ident), "ecdsa-sha2-%s", curve->name); buf_putstring(buf, key_ident, strlen(key_ident)); buf_putstring(buf, curve->name, strlen(curve->name)); buf_put_ecc_raw_pubkey_string(buf, key); } void buf_put_ecdsa_priv_key(buffer *buf, ecc_key *key) { buf_put_ecdsa_pub_key(buf, key); buf_putmpint(buf, key->k); } void buf_put_ecdsa_sign(buffer *buf, const ecc_key *key, const buffer *data_buf) { /* Based on libtomcrypt's ecc_sign_hash but without the asn1 */ int err = DROPBEAR_FAILURE; struct dropbear_ecc_curve *curve = NULL; hash_state hs; unsigned char hash[64]; void *e = NULL, *p = NULL, *s = NULL, *r; char key_ident[30]; buffer *sigbuf = NULL; TRACE(("buf_put_ecdsa_sign")) curve = curve_for_dp(key->dp); if (ltc_init_multi(&r, &s, &p, &e, NULL) != CRYPT_OK) { goto out; } curve->hash_desc->init(&hs); curve->hash_desc->process(&hs, data_buf->data, data_buf->len); curve->hash_desc->done(&hs, hash); if (ltc_mp.unsigned_read(e, hash, curve->hash_desc->hashsize) != CRYPT_OK) { goto out; } if (ltc_mp.read_radix(p, (char *)key->dp->order, 16) != CRYPT_OK) { goto out; } for (;;) { ecc_key R_key; /* ephemeral key */ if (ecc_make_key_ex(NULL, dropbear_ltc_prng, &R_key, key->dp) != CRYPT_OK) { goto out; } if (ltc_mp.mpdiv(R_key.pubkey.x, p, NULL, r) != CRYPT_OK) { goto out; } if (ltc_mp.compare_d(r, 0) == LTC_MP_EQ) { /* try again */ ecc_free(&R_key); continue; } /* k = 1/k */ if (ltc_mp.invmod(R_key.k, p, R_key.k) != CRYPT_OK) { goto out; } /* s = xr */ if (ltc_mp.mulmod(key->k, r, p, s) != CRYPT_OK) { goto out; } /* s = e + xr */ if (ltc_mp.add(e, s, s) != CRYPT_OK) { goto out; } if (ltc_mp.mpdiv(s, p, NULL, s) != CRYPT_OK) { goto out; } /* s = (e + xr)/k */ if (ltc_mp.mulmod(s, R_key.k, p, s) != CRYPT_OK) { goto out; } ecc_free(&R_key); if (ltc_mp.compare_d(s, 0) != LTC_MP_EQ) { break; } } snprintf(key_ident, sizeof(key_ident), "ecdsa-sha2-%s", curve->name); buf_putstring(buf, key_ident, strlen(key_ident)); /* enough for nistp521 */ sigbuf = buf_new(200); buf_putmpint(sigbuf, (mp_int*)r); buf_putmpint(sigbuf, (mp_int*)s); buf_putbufstring(buf, sigbuf); err = DROPBEAR_SUCCESS; out: if (r && s && p && e) { ltc_deinit_multi(r, s, p, e, NULL); } if (sigbuf) { buf_free(sigbuf); } if (err == DROPBEAR_FAILURE) { dropbear_exit("ECC error"); } } /* returns values in s and r returns DROPBEAR_SUCCESS or DROPBEAR_FAILURE */ static int buf_get_ecdsa_verify_params(buffer *buf, void *r, void* s) { int ret = DROPBEAR_FAILURE; unsigned int sig_len; unsigned int sig_pos; sig_len = buf_getint(buf); sig_pos = buf->pos; if (buf_getmpint(buf, r) != DROPBEAR_SUCCESS) { goto out; } if (buf_getmpint(buf, s) != DROPBEAR_SUCCESS) { goto out; } if (buf->pos - sig_pos != sig_len) { goto out; } ret = DROPBEAR_SUCCESS; out: return ret; } int buf_ecdsa_verify(buffer *buf, const ecc_key *key, const buffer *data_buf) { /* Based on libtomcrypt's ecc_verify_hash but without the asn1 */ int ret = DROPBEAR_FAILURE; hash_state hs; struct dropbear_ecc_curve *curve = NULL; unsigned char hash[64]; ecc_point *mG = NULL, *mQ = NULL; void *r = NULL, *s = NULL, *v = NULL, *w = NULL, *u1 = NULL, *u2 = NULL, *e = NULL, *p = NULL, *m = NULL; void *mp = NULL; /* verify * * w = s^-1 mod n * u1 = xw * u2 = rw * X = u1*G + u2*Q * v = X_x1 mod n * accept if v == r */ TRACE(("buf_ecdsa_verify")) curve = curve_for_dp(key->dp); mG = ltc_ecc_new_point(); mQ = ltc_ecc_new_point(); if (ltc_init_multi(&r, &s, &v, &w, &u1, &u2, &p, &e, &m, NULL) != CRYPT_OK || !mG || !mQ) { dropbear_exit("ECC error"); } if (buf_get_ecdsa_verify_params(buf, r, s) != DROPBEAR_SUCCESS) { goto out; } curve->hash_desc->init(&hs); curve->hash_desc->process(&hs, data_buf->data, data_buf->len); curve->hash_desc->done(&hs, hash); if (ltc_mp.unsigned_read(e, hash, curve->hash_desc->hashsize) != CRYPT_OK) { goto out; } /* get the order */ if (ltc_mp.read_radix(p, (char *)key->dp->order, 16) != CRYPT_OK) { goto out; } /* get the modulus */ if (ltc_mp.read_radix(m, (char *)key->dp->prime, 16) != CRYPT_OK) { goto out; } /* check for zero */ if (ltc_mp.compare_d(r, 0) == LTC_MP_EQ || ltc_mp.compare_d(s, 0) == LTC_MP_EQ || ltc_mp.compare(r, p) != LTC_MP_LT || ltc_mp.compare(s, p) != LTC_MP_LT) { goto out; } /* w = s^-1 mod n */ if (ltc_mp.invmod(s, p, w) != CRYPT_OK) { goto out; } /* u1 = ew */ if (ltc_mp.mulmod(e, w, p, u1) != CRYPT_OK) { goto out; } /* u2 = rw */ if (ltc_mp.mulmod(r, w, p, u2) != CRYPT_OK) { goto out; } /* find mG and mQ */ if (ltc_mp.read_radix(mG->x, (char *)key->dp->Gx, 16) != CRYPT_OK) { goto out; } if (ltc_mp.read_radix(mG->y, (char *)key->dp->Gy, 16) != CRYPT_OK) { goto out; } if (ltc_mp.set_int(mG->z, 1) != CRYPT_OK) { goto out; } if (ltc_mp.copy(key->pubkey.x, mQ->x) != CRYPT_OK || ltc_mp.copy(key->pubkey.y, mQ->y) != CRYPT_OK || ltc_mp.copy(key->pubkey.z, mQ->z) != CRYPT_OK) { goto out; } /* compute u1*mG + u2*mQ = mG */ if (ltc_mp.ecc_mul2add == NULL) { if (ltc_mp.ecc_ptmul(u1, mG, mG, m, 0) != CRYPT_OK) { goto out; } if (ltc_mp.ecc_ptmul(u2, mQ, mQ, m, 0) != CRYPT_OK) { goto out; } /* find the montgomery mp */ if (ltc_mp.montgomery_setup(m, &mp) != CRYPT_OK) { goto out; } /* add them */ if (ltc_mp.ecc_ptadd(mQ, mG, mG, m, mp) != CRYPT_OK) { goto out; } /* reduce */ if (ltc_mp.ecc_map(mG, m, mp) != CRYPT_OK) { goto out; } } else { /* use Shamir's trick to compute u1*mG + u2*mQ using half of the doubles */ if (ltc_mp.ecc_mul2add(mG, u1, mQ, u2, mG, m) != CRYPT_OK) { goto out; } } /* v = X_x1 mod n */ if (ltc_mp.mpdiv(mG->x, p, NULL, v) != CRYPT_OK) { goto out; } /* does v == r */ if (ltc_mp.compare(v, r) == LTC_MP_EQ) { ret = DROPBEAR_SUCCESS; } out: ltc_ecc_del_point(mG); ltc_ecc_del_point(mQ); ltc_deinit_multi(r, s, v, w, u1, u2, p, e, m, NULL); if (mp != NULL) { ltc_mp.montgomery_deinit(mp); } return ret; } #endif /* DROPBEAR_ECDSA */