view libtomcrypt/src/pk/pkcs1/pkcs_1_pss_encode.c @ 1902:4a6725ac957c

Revert "Don't include sk keys at all in KEX list" This reverts git commit f972813ecdc7bb981d25b5a63638bd158f1c8e72. The sk algorithms need to remain in the sigalgs list so that they are included in the server-sig-algs ext-info message sent by the server. RFC8308 for server-sig-algs requires that all algorithms are listed (though OpenSSH client 8.4p1 tested doesn't require that)
author Matt Johnston <matt@ucc.asn.au>
date Thu, 24 Mar 2022 13:42:08 +0800
parents 6dba84798cd5
children
line wrap: on
line source

/* LibTomCrypt, modular cryptographic library -- Tom St Denis
 *
 * LibTomCrypt is a library that provides various cryptographic
 * algorithms in a highly modular and flexible manner.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 */
#include "tomcrypt.h"

/**
  @file pkcs_1_pss_encode.c
  PKCS #1 PSS Signature Padding, Tom St Denis
*/

#ifdef LTC_PKCS_1

/**
   PKCS #1 v2.00 Signature Encoding
   @param msghash          The hash to encode
   @param msghashlen       The length of the hash (octets)
   @param saltlen          The length of the salt desired (octets)
   @param prng             An active PRNG context
   @param prng_idx         The index of the PRNG desired
   @param hash_idx         The index of the hash desired
   @param modulus_bitlen   The bit length of the RSA modulus
   @param out              [out] The destination of the encoding
   @param outlen           [in/out] The max size and resulting size of the encoded data
   @return CRYPT_OK if successful
*/
int pkcs_1_pss_encode(const unsigned char *msghash, unsigned long msghashlen,
                            unsigned long saltlen,  prng_state   *prng,
                            int           prng_idx, int           hash_idx,
                            unsigned long modulus_bitlen,
                            unsigned char *out,     unsigned long *outlen)
{
   unsigned char *DB, *mask, *salt, *hash;
   unsigned long x, y, hLen, modulus_len;
   int           err;
   hash_state    md;

   LTC_ARGCHK(msghash != NULL);
   LTC_ARGCHK(out     != NULL);
   LTC_ARGCHK(outlen  != NULL);

   /* ensure hash and PRNG are valid */
   if ((err = hash_is_valid(hash_idx)) != CRYPT_OK) {
      return err;
   }
   if ((err = prng_is_valid(prng_idx)) != CRYPT_OK) {
      return err;
   }

   hLen        = hash_descriptor[hash_idx].hashsize;
   modulus_bitlen--;
   modulus_len = (modulus_bitlen>>3) + (modulus_bitlen & 7 ? 1 : 0);

   /* check sizes */
   if ((saltlen > modulus_len) || (modulus_len < hLen + saltlen + 2)) {
      return CRYPT_PK_INVALID_SIZE;
   }

   /* allocate ram for DB/mask/salt/hash of size modulus_len */
   DB   = XMALLOC(modulus_len);
   mask = XMALLOC(modulus_len);
   salt = XMALLOC(modulus_len);
   hash = XMALLOC(modulus_len);
   if (DB == NULL || mask == NULL || salt == NULL || hash == NULL) {
      if (DB != NULL) {
         XFREE(DB);
      }
      if (mask != NULL) {
         XFREE(mask);
      }
      if (salt != NULL) {
         XFREE(salt);
      }
      if (hash != NULL) {
         XFREE(hash);
      }
      return CRYPT_MEM;
   }


   /* generate random salt */
   if (saltlen > 0) {
      if (prng_descriptor[prng_idx].read(salt, saltlen, prng) != saltlen) {
         err = CRYPT_ERROR_READPRNG;
         goto LBL_ERR;
      }
   }

   /* M = (eight) 0x00 || msghash || salt, hash = H(M) */
   if ((err = hash_descriptor[hash_idx].init(&md)) != CRYPT_OK) {
      goto LBL_ERR;
   }
   zeromem(DB, 8);
   if ((err = hash_descriptor[hash_idx].process(&md, DB, 8)) != CRYPT_OK) {
      goto LBL_ERR;
   }
   if ((err = hash_descriptor[hash_idx].process(&md, msghash, msghashlen)) != CRYPT_OK) {
      goto LBL_ERR;
   }
   if ((err = hash_descriptor[hash_idx].process(&md, salt, saltlen)) != CRYPT_OK) {
      goto LBL_ERR;
   }
   if ((err = hash_descriptor[hash_idx].done(&md, hash)) != CRYPT_OK) {
      goto LBL_ERR;
   }

   /* generate DB = PS || 0x01 || salt, PS == modulus_len - saltlen - hLen - 2 zero bytes */
   x = 0;
   XMEMSET(DB + x, 0, modulus_len - saltlen - hLen - 2);
   x += modulus_len - saltlen - hLen - 2;
   DB[x++] = 0x01;
   XMEMCPY(DB + x, salt, saltlen);
   /* x += saltlen; */

   /* generate mask of length modulus_len - hLen - 1 from hash */
   if ((err = pkcs_1_mgf1(hash_idx, hash, hLen, mask, modulus_len - hLen - 1)) != CRYPT_OK) {
      goto LBL_ERR;
   }

   /* xor against DB */
   for (y = 0; y < (modulus_len - hLen - 1); y++) {
      DB[y] ^= mask[y];
   }

   /* output is DB || hash || 0xBC */
   if (*outlen < modulus_len) {
      *outlen = modulus_len;
      err = CRYPT_BUFFER_OVERFLOW;
      goto LBL_ERR;
   }

   /* DB len = modulus_len - hLen - 1 */
   y = 0;
   XMEMCPY(out + y, DB, modulus_len - hLen - 1);
   y += modulus_len - hLen - 1;

   /* hash */
   XMEMCPY(out + y, hash, hLen);
   y += hLen;

   /* 0xBC */
   out[y] = 0xBC;

   /* now clear the 8*modulus_len - modulus_bitlen most significant bits */
   out[0] &= 0xFF >> ((modulus_len<<3) - modulus_bitlen);

   /* store output size */
   *outlen = modulus_len;
   err = CRYPT_OK;
LBL_ERR:
#ifdef LTC_CLEAN_STACK
   zeromem(DB,   modulus_len);
   zeromem(mask, modulus_len);
   zeromem(salt, modulus_len);
   zeromem(hash, modulus_len);
#endif

   XFREE(hash);
   XFREE(salt);
   XFREE(mask);
   XFREE(DB);

   return err;
}

#endif /* LTC_PKCS_1 */

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */