Mercurial > dropbear
view libtommath/bn_mp_exptmod.c @ 1902:4a6725ac957c
Revert "Don't include sk keys at all in KEX list"
This reverts git commit f972813ecdc7bb981d25b5a63638bd158f1c8e72.
The sk algorithms need to remain in the sigalgs list so that they
are included in the server-sig-algs ext-info message sent by
the server. RFC8308 for server-sig-algs requires that all algorithms are
listed (though OpenSSH client 8.4p1 tested doesn't require that)
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Thu, 24 Mar 2022 13:42:08 +0800 |
parents | 1051e4eea25a |
children |
line wrap: on
line source
#include "tommath_private.h" #ifdef BN_MP_EXPTMOD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* this is a shell function that calls either the normal or Montgomery * exptmod functions. Originally the call to the montgomery code was * embedded in the normal function but that wasted alot of stack space * for nothing (since 99% of the time the Montgomery code would be called) */ mp_err mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y) { int dr; /* modulus P must be positive */ if (P->sign == MP_NEG) { return MP_VAL; } /* if exponent X is negative we have to recurse */ if (X->sign == MP_NEG) { mp_int tmpG, tmpX; mp_err err; if (!MP_HAS(MP_INVMOD)) { return MP_VAL; } if ((err = mp_init_multi(&tmpG, &tmpX, NULL)) != MP_OKAY) { return err; } /* first compute 1/G mod P */ if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) { goto LBL_ERR; } /* now get |X| */ if ((err = mp_abs(X, &tmpX)) != MP_OKAY) { goto LBL_ERR; } /* and now compute (1/G)**|X| instead of G**X [X < 0] */ err = mp_exptmod(&tmpG, &tmpX, P, Y); LBL_ERR: mp_clear_multi(&tmpG, &tmpX, NULL); return err; } /* modified diminished radix reduction */ if (MP_HAS(MP_REDUCE_IS_2K_L) && MP_HAS(MP_REDUCE_2K_L) && MP_HAS(S_MP_EXPTMOD) && (mp_reduce_is_2k_l(P) == MP_YES)) { return s_mp_exptmod(G, X, P, Y, 1); } /* is it a DR modulus? default to no */ dr = (MP_HAS(MP_DR_IS_MODULUS) && (mp_dr_is_modulus(P) == MP_YES)) ? 1 : 0; /* if not, is it a unrestricted DR modulus? */ if (MP_HAS(MP_REDUCE_IS_2K) && (dr == 0)) { dr = (mp_reduce_is_2k(P) == MP_YES) ? 2 : 0; } /* if the modulus is odd or dr != 0 use the montgomery method */ if (MP_HAS(S_MP_EXPTMOD_FAST) && (MP_IS_ODD(P) || (dr != 0))) { return s_mp_exptmod_fast(G, X, P, Y, dr); } else if (MP_HAS(S_MP_EXPTMOD)) { /* otherwise use the generic Barrett reduction technique */ return s_mp_exptmod(G, X, P, Y, 0); } else { /* no exptmod for evens */ return MP_VAL; } } #endif