view libtommath/bn_mp_montgomery_reduce.c @ 1902:4a6725ac957c

Revert "Don't include sk keys at all in KEX list" This reverts git commit f972813ecdc7bb981d25b5a63638bd158f1c8e72. The sk algorithms need to remain in the sigalgs list so that they are included in the server-sig-algs ext-info message sent by the server. RFC8308 for server-sig-algs requires that all algorithms are listed (though OpenSSH client 8.4p1 tested doesn't require that)
author Matt Johnston <matt@ucc.asn.au>
date Thu, 24 Mar 2022 13:42:08 +0800
parents 1051e4eea25a
children
line wrap: on
line source

#include "tommath_private.h"
#ifdef BN_MP_MONTGOMERY_REDUCE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */

/* computes xR**-1 == x (mod N) via Montgomery Reduction */
mp_err mp_montgomery_reduce(mp_int *x, const mp_int *n, mp_digit rho)
{
   int      ix, digs;
   mp_err   err;
   mp_digit mu;

   /* can the fast reduction [comba] method be used?
    *
    * Note that unlike in mul you're safely allowed *less*
    * than the available columns [255 per default] since carries
    * are fixed up in the inner loop.
    */
   digs = (n->used * 2) + 1;
   if ((digs < MP_WARRAY) &&
       (x->used <= MP_WARRAY) &&
       (n->used < MP_MAXFAST)) {
      return s_mp_montgomery_reduce_fast(x, n, rho);
   }

   /* grow the input as required */
   if (x->alloc < digs) {
      if ((err = mp_grow(x, digs)) != MP_OKAY) {
         return err;
      }
   }
   x->used = digs;

   for (ix = 0; ix < n->used; ix++) {
      /* mu = ai * rho mod b
       *
       * The value of rho must be precalculated via
       * montgomery_setup() such that
       * it equals -1/n0 mod b this allows the
       * following inner loop to reduce the
       * input one digit at a time
       */
      mu = (mp_digit)(((mp_word)x->dp[ix] * (mp_word)rho) & MP_MASK);

      /* a = a + mu * m * b**i */
      {
         int iy;
         mp_digit *tmpn, *tmpx, u;
         mp_word r;

         /* alias for digits of the modulus */
         tmpn = n->dp;

         /* alias for the digits of x [the input] */
         tmpx = x->dp + ix;

         /* set the carry to zero */
         u = 0;

         /* Multiply and add in place */
         for (iy = 0; iy < n->used; iy++) {
            /* compute product and sum */
            r       = ((mp_word)mu * (mp_word)*tmpn++) +
                      (mp_word)u + (mp_word)*tmpx;

            /* get carry */
            u       = (mp_digit)(r >> (mp_word)MP_DIGIT_BIT);

            /* fix digit */
            *tmpx++ = (mp_digit)(r & (mp_word)MP_MASK);
         }
         /* At this point the ix'th digit of x should be zero */


         /* propagate carries upwards as required*/
         while (u != 0u) {
            *tmpx   += u;
            u        = *tmpx >> MP_DIGIT_BIT;
            *tmpx++ &= MP_MASK;
         }
      }
   }

   /* at this point the n.used'th least
    * significant digits of x are all zero
    * which means we can shift x to the
    * right by n.used digits and the
    * residue is unchanged.
    */

   /* x = x/b**n.used */
   mp_clamp(x);
   mp_rshd(x, n->used);

   /* if x >= n then x = x - n */
   if (mp_cmp_mag(x, n) != MP_LT) {
      return s_mp_sub(x, n, x);
   }

   return MP_OKAY;
}
#endif