view libtommath/bn_s_mp_mul_digs_fast.c @ 1902:4a6725ac957c

Revert "Don't include sk keys at all in KEX list" This reverts git commit f972813ecdc7bb981d25b5a63638bd158f1c8e72. The sk algorithms need to remain in the sigalgs list so that they are included in the server-sig-algs ext-info message sent by the server. RFC8308 for server-sig-algs requires that all algorithms are listed (though OpenSSH client 8.4p1 tested doesn't require that)
author Matt Johnston <matt@ucc.asn.au>
date Thu, 24 Mar 2022 13:42:08 +0800
parents 1051e4eea25a
children
line wrap: on
line source

#include "tommath_private.h"
#ifdef BN_S_MP_MUL_DIGS_FAST_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */

/* Fast (comba) multiplier
 *
 * This is the fast column-array [comba] multiplier.  It is
 * designed to compute the columns of the product first
 * then handle the carries afterwards.  This has the effect
 * of making the nested loops that compute the columns very
 * simple and schedulable on super-scalar processors.
 *
 * This has been modified to produce a variable number of
 * digits of output so if say only a half-product is required
 * you don't have to compute the upper half (a feature
 * required for fast Barrett reduction).
 *
 * Based on Algorithm 14.12 on pp.595 of HAC.
 *
 */
mp_err s_mp_mul_digs_fast(const mp_int *a, const mp_int *b, mp_int *c, int digs)
{
   int      olduse, pa, ix, iz;
   mp_err   err;
   mp_digit W[MP_WARRAY];
   mp_word  _W;

   /* grow the destination as required */
   if (c->alloc < digs) {
      if ((err = mp_grow(c, digs)) != MP_OKAY) {
         return err;
      }
   }

   /* number of output digits to produce */
   pa = MP_MIN(digs, a->used + b->used);

   /* clear the carry */
   _W = 0;
   for (ix = 0; ix < pa; ix++) {
      int      tx, ty;
      int      iy;
      mp_digit *tmpx, *tmpy;

      /* get offsets into the two bignums */
      ty = MP_MIN(b->used-1, ix);
      tx = ix - ty;

      /* setup temp aliases */
      tmpx = a->dp + tx;
      tmpy = b->dp + ty;

      /* this is the number of times the loop will iterrate, essentially
         while (tx++ < a->used && ty-- >= 0) { ... }
       */
      iy = MP_MIN(a->used-tx, ty+1);

      /* execute loop */
      for (iz = 0; iz < iy; ++iz) {
         _W += (mp_word)*tmpx++ * (mp_word)*tmpy--;

      }

      /* store term */
      W[ix] = (mp_digit)_W & MP_MASK;

      /* make next carry */
      _W = _W >> (mp_word)MP_DIGIT_BIT;
   }

   /* setup dest */
   olduse  = c->used;
   c->used = pa;

   {
      mp_digit *tmpc;
      tmpc = c->dp;
      for (ix = 0; ix < pa; ix++) {
         /* now extract the previous digit [below the carry] */
         *tmpc++ = W[ix];
      }

      /* clear unused digits [that existed in the old copy of c] */
      MP_ZERO_DIGITS(tmpc, olduse - ix);
   }
   mp_clamp(c);
   return MP_OKAY;
}
#endif