view libtomcrypt/testprof/x86_prof.c @ 438:4bfd22bac1dc

Document -p [address:]port
author Matt Johnston <matt@ucc.asn.au>
date Thu, 22 Feb 2007 15:51:15 +0000
parents 0cbe8f6dbf9e
children f849a5ca2efc
line wrap: on
line source

#include <tomcrypt_test.h>

prng_state yarrow_prng;

struct list results[100];
int no_results;
int sorter(const void *a, const void *b)
{
   const struct list *A, *B;
   A = a;
   B = b;
   if (A->avg < B->avg) return -1;
   if (A->avg > B->avg) return 1;
   return 0;
}

void tally_results(int type)
{
   int x;

   /* qsort the results */
   qsort(results, no_results, sizeof(struct list), &sorter);

   fprintf(stderr, "\n");
   if (type == 0) {
      for (x = 0; x < no_results; x++) {
         fprintf(stderr, "%-20s: Schedule at %6lu\n", cipher_descriptor[results[x].id].name, (unsigned long)results[x].spd1);
      } 
   } else if (type == 1) {
      for (x = 0; x < no_results; x++) {
        printf
          ("%-20s[%3d]: Encrypt at %5lu, Decrypt at %5lu\n", cipher_descriptor[results[x].id].name, cipher_descriptor[results[x].id].ID, results[x].spd1, results[x].spd2);
      }
   } else {
      for (x = 0; x < no_results; x++) {
        printf
          ("%-20s: Process at %5lu\n", hash_descriptor[results[x].id].name, results[x].spd1 / 1000);
      }
   }
}

/* RDTSC from Scott Duplichan */
ulong64 rdtsc (void)
   {
   #if defined __GNUC__ && !defined(LTC_NO_ASM)
      #ifdef INTEL_CC
			ulong64 a;
			asm ( " rdtsc ":"=A"(a));
         return a;
      #elif defined(__i386__) || defined(__x86_64__)
         ulong64 a;
         asm __volatile__ ("rdtsc\nmovl %%eax,(%0)\nmovl %%edx,4(%0)\n"::"r"(&a):"%eax","%edx");
         return a;
      #elif defined(LTC_PPC32) || defined(TFM_PPC32)
         unsigned long a, b;
         __asm__ __volatile__ ("mftbu %1 \nmftb %0\n":"=r"(a), "=r"(b));
         return (((ulong64)b) << 32ULL) | ((ulong64)a);
      #elif defined(__ia64__)  /* gcc-IA64 version */
         unsigned long result;
         __asm__ __volatile__("mov %0=ar.itc" : "=r"(result) :: "memory");
         while (__builtin_expect ((int) result == -1, 0))
         __asm__ __volatile__("mov %0=ar.itc" : "=r"(result) :: "memory");
         return result;
      #elif defined(__sparc__)
         #if defined(__arch64__)
           ulong64 a;
           asm volatile("rd %%tick,%0" : "=r" (a));
           return a;
         #else
           register unsigned long x, y;
           __asm__ __volatile__ ("rd %%tick, %0; clruw %0, %1; srlx %0, 32, %0" : "=r" (x), "=r" (y) : "0" (x), "1" (y));
           return ((unsigned long long) x << 32) | y; 
         #endif
      #else 
         return XCLOCK();
      #endif

   /* Microsoft and Intel Windows compilers */
   #elif defined _M_IX86 && !defined(LTC_NO_ASM)
     __asm rdtsc
   #elif defined _M_AMD64 && !defined(LTC_NO_ASM)
     return __rdtsc ();
   #elif defined _M_IA64 && !defined(LTC_NO_ASM)
     #if defined __INTEL_COMPILER
       #include <ia64intrin.h>
     #endif
      return __getReg (3116);
   #else
     return XCLOCK();
   #endif
   }

static ulong64 timer, skew = 0;

void t_start(void)
{
   timer = rdtsc();
}

ulong64 t_read(void)
{
   return rdtsc() - timer;
}

void init_timer(void)
{
   ulong64 c1, c2, t1, t2, t3;
   unsigned long y1;

   c1 = c2 = (ulong64)-1;
   for (y1 = 0; y1 < TIMES*100; y1++) {
      t_start();
      t1 = t_read();
      t3 = t_read();
      t2 = (t_read() - t1)>>1;

      c1 = (t1 > c1) ? t1 : c1;
      c2 = (t2 > c2) ? t2 : c2;
   }
   skew = c2 - c1;
   fprintf(stderr, "Clock Skew: %lu\n", (unsigned long)skew);
}

void reg_algs(void)
{
  int err;
#ifdef RIJNDAEL
  register_cipher (&aes_desc);
#endif
#ifdef BLOWFISH
  register_cipher (&blowfish_desc);
#endif
#ifdef XTEA
  register_cipher (&xtea_desc);
#endif
#ifdef RC5
  register_cipher (&rc5_desc);
#endif
#ifdef RC6
  register_cipher (&rc6_desc);
#endif
#ifdef SAFERP
  register_cipher (&saferp_desc);
#endif
#ifdef TWOFISH
  register_cipher (&twofish_desc);
#endif
#ifdef SAFER
  register_cipher (&safer_k64_desc);
  register_cipher (&safer_sk64_desc);
  register_cipher (&safer_k128_desc);
  register_cipher (&safer_sk128_desc);
#endif
#ifdef RC2
  register_cipher (&rc2_desc);
#endif
#ifdef DES
  register_cipher (&des_desc);
  register_cipher (&des3_desc);
#endif
#ifdef CAST5
  register_cipher (&cast5_desc);
#endif
#ifdef NOEKEON
  register_cipher (&noekeon_desc);
#endif
#ifdef SKIPJACK
  register_cipher (&skipjack_desc);
#endif
#ifdef KHAZAD
  register_cipher (&khazad_desc);
#endif
#ifdef ANUBIS
  register_cipher (&anubis_desc);
#endif
#ifdef KSEED
  register_cipher (&kseed_desc);
#endif
#ifdef LTC_KASUMI
  register_cipher (&kasumi_desc);
#endif

#ifdef TIGER
  register_hash (&tiger_desc);
#endif
#ifdef MD2
  register_hash (&md2_desc);
#endif
#ifdef MD4
  register_hash (&md4_desc);
#endif
#ifdef MD5
  register_hash (&md5_desc);
#endif
#ifdef SHA1
  register_hash (&sha1_desc);
#endif
#ifdef SHA224
  register_hash (&sha224_desc);
#endif
#ifdef SHA256
  register_hash (&sha256_desc);
#endif
#ifdef SHA384
  register_hash (&sha384_desc);
#endif
#ifdef SHA512
  register_hash (&sha512_desc);
#endif
#ifdef RIPEMD128
  register_hash (&rmd128_desc);
#endif
#ifdef RIPEMD160
  register_hash (&rmd160_desc);
#endif
#ifdef RIPEMD256
  register_hash (&rmd256_desc);
#endif
#ifdef RIPEMD320
  register_hash (&rmd320_desc);
#endif
#ifdef WHIRLPOOL
  register_hash (&whirlpool_desc);
#endif
#ifdef CHC_HASH
  register_hash(&chc_desc);
  if ((err = chc_register(register_cipher(&aes_desc))) != CRYPT_OK) {
     fprintf(stderr, "chc_register error: %s\n", error_to_string(err));
     exit(EXIT_FAILURE);
  }
#endif


#ifndef YARROW 
   #error This demo requires Yarrow.
#endif
register_prng(&yarrow_desc);
#ifdef FORTUNA
register_prng(&fortuna_desc);
#endif
#ifdef RC4
register_prng(&rc4_desc);
#endif
#ifdef SOBER128
register_prng(&sober128_desc);
#endif

   if ((err = rng_make_prng(128, find_prng("yarrow"), &yarrow_prng, NULL)) != CRYPT_OK) {
      fprintf(stderr, "rng_make_prng failed: %s\n", error_to_string(err));
      exit(EXIT_FAILURE);
   }
   
}

int time_keysched(void)
{
  unsigned long x, y1;
  ulong64 t1, c1;
  symmetric_key skey;
  int kl;
  int    (*func) (const unsigned char *, int , int , symmetric_key *);
  unsigned char key[MAXBLOCKSIZE];

  fprintf(stderr, "\n\nKey Schedule Time Trials for the Symmetric Ciphers:\n(Times are cycles per key)\n");
  no_results = 0; 
 for (x = 0; cipher_descriptor[x].name != NULL; x++) {
#define DO1(k)   func(k, kl, 0, &skey);

    func = cipher_descriptor[x].setup;
    kl   = cipher_descriptor[x].min_key_length;
    c1 = (ulong64)-1;
    for (y1 = 0; y1 < KTIMES; y1++) {
       yarrow_read(key, kl, &yarrow_prng);
       t_start();
       DO1(key);
       t1 = t_read();
       c1 = (t1 > c1) ? c1 : t1;
    }
    t1 = c1 - skew;
    results[no_results].spd1 = results[no_results].avg = t1;
    results[no_results++].id = x;
    fprintf(stderr, "."); fflush(stdout);

#undef DO1
   }
   tally_results(0);

   return 0;
}

int time_cipher(void)
{
  unsigned long x, y1;
  ulong64  t1, t2, c1, c2, a1, a2;
  symmetric_ECB ecb;
  unsigned char key[MAXBLOCKSIZE], pt[4096];
  int err;

  fprintf(stderr, "\n\nECB Time Trials for the Symmetric Ciphers:\n");
  no_results = 0;
  for (x = 0; cipher_descriptor[x].name != NULL; x++) {
    ecb_start(x, key, cipher_descriptor[x].min_key_length, 0, &ecb);

    /* sanity check on cipher */
    if ((err = cipher_descriptor[x].test()) != CRYPT_OK) {
       fprintf(stderr, "\n\nERROR: Cipher %s failed self-test %s\n", cipher_descriptor[x].name, error_to_string(err));
       exit(EXIT_FAILURE);
    }

#define DO1   ecb_encrypt(pt, pt, sizeof(pt), &ecb);
#define DO2   DO1 DO1

    c1 = c2 = (ulong64)-1;
    for (y1 = 0; y1 < 100; y1++) {
        t_start();
        DO1;
        t1 = t_read();
        DO2;
        t2 = t_read();
        t2 -= t1;

        c1 = (t1 > c1 ? c1 : t1);
        c2 = (t2 > c2 ? c2 : t2);
    }
    a1 = c2 - c1 - skew;

#undef DO1
#undef DO2
#define DO1   ecb_decrypt(pt, pt, sizeof(pt), &ecb);
#define DO2   DO1 DO1

    c1 = c2 = (ulong64)-1;
    for (y1 = 0; y1 < 100; y1++) {
        t_start();
        DO1;
        t1 = t_read();
        DO2;
        t2 = t_read();
        t2 -= t1;

        c1 = (t1 > c1 ? c1 : t1);
        c2 = (t2 > c2 ? c2 : t2);
    }
    a2 = c2 - c1 - skew;
    ecb_done(&ecb);
    
    results[no_results].id = x;
    results[no_results].spd1 = a1/(sizeof(pt)/cipher_descriptor[x].block_length);
    results[no_results].spd2 = a2/(sizeof(pt)/cipher_descriptor[x].block_length);
    results[no_results].avg = (results[no_results].spd1 + results[no_results].spd2+1)/2;
    ++no_results;
    fprintf(stderr, "."); fflush(stdout);
    
#undef DO2
#undef DO1
   }
   tally_results(1);

   return 0;
}

#ifdef LTC_CBC_MODE 
int time_cipher2(void)
{
  unsigned long x, y1;
  ulong64  t1, t2, c1, c2, a1, a2;
  symmetric_CBC cbc;
  unsigned char key[MAXBLOCKSIZE], pt[4096];
  int err;

  fprintf(stderr, "\n\nCBC Time Trials for the Symmetric Ciphers:\n");
  no_results = 0;
  for (x = 0; cipher_descriptor[x].name != NULL; x++) {
    cbc_start(x, pt, key, cipher_descriptor[x].min_key_length, 0, &cbc);

    /* sanity check on cipher */
    if ((err = cipher_descriptor[x].test()) != CRYPT_OK) {
       fprintf(stderr, "\n\nERROR: Cipher %s failed self-test %s\n", cipher_descriptor[x].name, error_to_string(err));
       exit(EXIT_FAILURE);
    }

#define DO1   cbc_encrypt(pt, pt, sizeof(pt), &cbc);
#define DO2   DO1 DO1

    c1 = c2 = (ulong64)-1;
    for (y1 = 0; y1 < 100; y1++) {
        t_start();
        DO1;
        t1 = t_read();
        DO2;
        t2 = t_read();
        t2 -= t1;

        c1 = (t1 > c1 ? c1 : t1);
        c2 = (t2 > c2 ? c2 : t2);
    }
    a1 = c2 - c1 - skew;

#undef DO1
#undef DO2
#define DO1   cbc_decrypt(pt, pt, sizeof(pt), &cbc);
#define DO2   DO1 DO1

    c1 = c2 = (ulong64)-1;
    for (y1 = 0; y1 < 100; y1++) {
        t_start();
        DO1;
        t1 = t_read();
        DO2;
        t2 = t_read();
        t2 -= t1;

        c1 = (t1 > c1 ? c1 : t1);
        c2 = (t2 > c2 ? c2 : t2);
    }
    a2 = c2 - c1 - skew;
    cbc_done(&cbc);
    
    results[no_results].id = x;
    results[no_results].spd1 = a1/(sizeof(pt)/cipher_descriptor[x].block_length);
    results[no_results].spd2 = a2/(sizeof(pt)/cipher_descriptor[x].block_length);
    results[no_results].avg = (results[no_results].spd1 + results[no_results].spd2+1)/2;
    ++no_results;
    fprintf(stderr, "."); fflush(stdout);
    
#undef DO2
#undef DO1
   }
   tally_results(1);

   return 0;
}
#else
int time_cipher2(void) { fprintf(stderr, "NO CBC\n"); return 0; }
#endif

#ifdef LTC_CTR_MODE
int time_cipher3(void)
{
  unsigned long x, y1;
  ulong64  t1, t2, c1, c2, a1, a2;
  symmetric_CTR ctr;
  unsigned char key[MAXBLOCKSIZE], pt[4096];
  int err;

  fprintf(stderr, "\n\nCTR Time Trials for the Symmetric Ciphers:\n");
  no_results = 0;
  for (x = 0; cipher_descriptor[x].name != NULL; x++) {
    ctr_start(x, pt, key, cipher_descriptor[x].min_key_length, 0, CTR_COUNTER_LITTLE_ENDIAN, &ctr);

    /* sanity check on cipher */
    if ((err = cipher_descriptor[x].test()) != CRYPT_OK) {
       fprintf(stderr, "\n\nERROR: Cipher %s failed self-test %s\n", cipher_descriptor[x].name, error_to_string(err));
       exit(EXIT_FAILURE);
    }

#define DO1   ctr_encrypt(pt, pt, sizeof(pt), &ctr);
#define DO2   DO1 DO1

    c1 = c2 = (ulong64)-1;
    for (y1 = 0; y1 < 100; y1++) {
        t_start();
        DO1;
        t1 = t_read();
        DO2;
        t2 = t_read();
        t2 -= t1;

        c1 = (t1 > c1 ? c1 : t1);
        c2 = (t2 > c2 ? c2 : t2);
    }
    a1 = c2 - c1 - skew;

#undef DO1
#undef DO2
#define DO1   ctr_decrypt(pt, pt, sizeof(pt), &ctr);
#define DO2   DO1 DO1

    c1 = c2 = (ulong64)-1;
    for (y1 = 0; y1 < 100; y1++) {
        t_start();
        DO1;
        t1 = t_read();
        DO2;
        t2 = t_read();
        t2 -= t1;

        c1 = (t1 > c1 ? c1 : t1);
        c2 = (t2 > c2 ? c2 : t2);
    }
    a2 = c2 - c1 - skew;
    ctr_done(&ctr);
    
    results[no_results].id = x;
    results[no_results].spd1 = a1/(sizeof(pt)/cipher_descriptor[x].block_length);
    results[no_results].spd2 = a2/(sizeof(pt)/cipher_descriptor[x].block_length);
    results[no_results].avg = (results[no_results].spd1 + results[no_results].spd2+1)/2;
    ++no_results;
    fprintf(stderr, "."); fflush(stdout);
    
#undef DO2
#undef DO1
   }
   tally_results(1);

   return 0;
}
#else
int time_cipher3(void) { fprintf(stderr, "NO CTR\n"); return 0; }
#endif

#ifdef LTC_LRW_MODE
int time_cipher4(void)
{
  unsigned long x, y1;
  ulong64  t1, t2, c1, c2, a1, a2;
  symmetric_LRW lrw;
  unsigned char key[MAXBLOCKSIZE], pt[4096];
  int err;

  fprintf(stderr, "\n\nLRW Time Trials for the Symmetric Ciphers:\n");
  no_results = 0;
  for (x = 0; cipher_descriptor[x].name != NULL; x++) {
    if (cipher_descriptor[x].block_length != 16) continue;
    lrw_start(x, pt, key, cipher_descriptor[x].min_key_length, key, 0, &lrw);

    /* sanity check on cipher */
    if ((err = cipher_descriptor[x].test()) != CRYPT_OK) {
       fprintf(stderr, "\n\nERROR: Cipher %s failed self-test %s\n", cipher_descriptor[x].name, error_to_string(err));
       exit(EXIT_FAILURE);
    }

#define DO1   lrw_encrypt(pt, pt, sizeof(pt), &lrw);
#define DO2   DO1 DO1

    c1 = c2 = (ulong64)-1;
    for (y1 = 0; y1 < 100; y1++) {
        t_start();
        DO1;
        t1 = t_read();
        DO2;
        t2 = t_read();
        t2 -= t1;

        c1 = (t1 > c1 ? c1 : t1);
        c2 = (t2 > c2 ? c2 : t2);
    }
    a1 = c2 - c1 - skew;

#undef DO1
#undef DO2
#define DO1   lrw_decrypt(pt, pt, sizeof(pt), &lrw);
#define DO2   DO1 DO1

    c1 = c2 = (ulong64)-1;
    for (y1 = 0; y1 < 100; y1++) {
        t_start();
        DO1;
        t1 = t_read();
        DO2;
        t2 = t_read();
        t2 -= t1;

        c1 = (t1 > c1 ? c1 : t1);
        c2 = (t2 > c2 ? c2 : t2);
    }
    a2 = c2 - c1 - skew;

    lrw_done(&lrw);
    
    results[no_results].id = x;
    results[no_results].spd1 = a1/(sizeof(pt)/cipher_descriptor[x].block_length);
    results[no_results].spd2 = a2/(sizeof(pt)/cipher_descriptor[x].block_length);
    results[no_results].avg = (results[no_results].spd1 + results[no_results].spd2+1)/2;
    ++no_results;
    fprintf(stderr, "."); fflush(stdout);
    
#undef DO2
#undef DO1
   }
   tally_results(1);

   return 0;
}
#else
int time_cipher4(void) { fprintf(stderr, "NO LRW\n"); return 0; }
#endif


int time_hash(void)
{
  unsigned long x, y1, len;
  ulong64 t1, t2, c1, c2;
  hash_state md;
  int    (*func)(hash_state *, const unsigned char *, unsigned long), err;
  unsigned char pt[MAXBLOCKSIZE];


  fprintf(stderr, "\n\nHASH Time Trials for:\n");
  no_results = 0;
  for (x = 0; hash_descriptor[x].name != NULL; x++) {

    /* sanity check on hash */
    if ((err = hash_descriptor[x].test()) != CRYPT_OK) {
       fprintf(stderr, "\n\nERROR: Hash %s failed self-test %s\n", hash_descriptor[x].name, error_to_string(err));
       exit(EXIT_FAILURE);
    }

    hash_descriptor[x].init(&md);

#define DO1   func(&md,pt,len);
#define DO2   DO1 DO1

    func = hash_descriptor[x].process;
    len  = hash_descriptor[x].blocksize;

    c1 = c2 = (ulong64)-1;
    for (y1 = 0; y1 < TIMES; y1++) {
       t_start();
       DO1;
       t1 = t_read();
       DO2;
       t2 = t_read() - t1;
       c1 = (t1 > c1) ? c1 : t1;
       c2 = (t2 > c2) ? c2 : t2;
    }
    t1 = c2 - c1 - skew;
    t1 = ((t1 * CONST64(1000))) / ((ulong64)hash_descriptor[x].blocksize);
    results[no_results].id = x;
    results[no_results].spd1 = results[no_results].avg = t1;
    ++no_results;
    fprintf(stderr, "."); fflush(stdout);
#undef DO2
#undef DO1
   }
   tally_results(2);

   return 0;
}

#undef MPI
/*#warning you need an mp_rand!!!*/

#ifdef MPI
void time_mult(void)
{
   ulong64 t1, t2;
   unsigned long x, y;
   void  *a, *b, *c;

   fprintf(stderr, "Timing Multiplying:\n");
   mp_init_multi(&a,&b,&c,NULL);
   for (x = 128/DIGIT_BIT; x <= 1536/DIGIT_BIT; x += 128/DIGIT_BIT) {
       mp_rand(&a, x);
       mp_rand(&b, x);

#define DO1 mp_mul(&a, &b, &c);
#define DO2 DO1; DO1;

       t2 = -1;
       for (y = 0; y < TIMES; y++) {
           t_start();
           t1 = t_read();
           DO2;
           t1 = (t_read() - t1)>>1;
           if (t1 < t2) t2 = t1;
       }
       fprintf(stderr, "%4lu bits: %9llu cycles\n", x*DIGIT_BIT, t2);
   }
   mp_clear_multi(&a,&b,&c,NULL);

#undef DO1
#undef DO2
} 

void time_sqr(void)
{
   ulong64 t1, t2;
   unsigned long x, y;
   mp_int  a, b;

   fprintf(stderr, "Timing Squaring:\n");
   mp_init_multi(&a,&b,NULL);
   for (x = 128/DIGIT_BIT; x <= 1536/DIGIT_BIT; x += 128/DIGIT_BIT) {
       mp_rand(&a, x);

#define DO1 mp_sqr(&a, &b);
#define DO2 DO1; DO1;

       t2 = -1;
       for (y = 0; y < TIMES; y++) {
           t_start();
           t1 = t_read();
           DO2;
           t1 = (t_read() - t1)>>1;
           if (t1 < t2) t2 = t1;
       }
       fprintf(stderr, "%4lu bits: %9llu cycles\n", x*DIGIT_BIT, t2);
   }
   mp_clear_multi(&a,&b,NULL);

#undef DO1
#undef DO2
}
#else
void time_mult(void) { fprintf(stderr, "NO MULT\n"); }
void time_sqr(void) { fprintf(stderr, "NO SQR\n"); }
#endif
   
void time_prng(void)
{
   ulong64 t1, t2;
   unsigned char buf[4096];
   prng_state tprng;
   unsigned long x, y;
   int           err;

   fprintf(stderr, "Timing PRNGs (cycles/byte output, cycles add_entropy (32 bytes) :\n");
   for (x = 0; prng_descriptor[x].name != NULL; x++) {

      /* sanity check on prng */
      if ((err = prng_descriptor[x].test()) != CRYPT_OK) {
         fprintf(stderr, "\n\nERROR: PRNG %s failed self-test %s\n", prng_descriptor[x].name, error_to_string(err));
         exit(EXIT_FAILURE);
      }

      prng_descriptor[x].start(&tprng);
      zeromem(buf, 256);
      prng_descriptor[x].add_entropy(buf, 256, &tprng);
      prng_descriptor[x].ready(&tprng);
      t2 = -1;

#define DO1 if (prng_descriptor[x].read(buf, 4096, &tprng) != 4096) { fprintf(stderr, "\n\nERROR READ != 4096\n\n"); exit(EXIT_FAILURE); }
#define DO2 DO1 DO1
      for (y = 0; y < 10000; y++) {
         t_start();
         t1 = t_read();
         DO2;
         t1 = (t_read() - t1)>>1;
         if (t1 < t2) t2 = t1;
      }
      fprintf(stderr, "%20s: %5llu ", prng_descriptor[x].name, t2>>12);
#undef DO2
#undef DO1

#define DO1 prng_descriptor[x].start(&tprng); prng_descriptor[x].add_entropy(buf, 32, &tprng); prng_descriptor[x].ready(&tprng); prng_descriptor[x].done(&tprng);
#define DO2 DO1 DO1
      for (y = 0; y < 10000; y++) {
         t_start();
         t1 = t_read();
         DO2;
         t1 = (t_read() - t1)>>1;
         if (t1 < t2) t2 = t1;
      }
      fprintf(stderr, "%5llu\n", t2);
#undef DO2
#undef DO1

   }
}

#ifdef MDSA
/* time various DSA operations */
void time_dsa(void)
{
   dsa_key       key;
   ulong64       t1, t2;
   unsigned long x, y;
   int           err;
static const struct {
   int group, modulus;
} groups[] = {
{ 20, 96  }, 
{ 20, 128 },
{ 24, 192 },
{ 28, 256 },
{ 32, 512 }
};

   for (x = 0; x < (sizeof(groups)/sizeof(groups[0])); x++) {
       t2 = 0;
       for (y = 0; y < 4; y++) {
           t_start();
           t1 = t_read();
           if ((err = dsa_make_key(&yarrow_prng, find_prng("yarrow"), groups[x].group, groups[x].modulus, &key)) != CRYPT_OK) {
              fprintf(stderr, "\n\ndsa_make_key says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK));
              exit(EXIT_FAILURE);
           }
           t1 = t_read() - t1;
           t2 += t1;

#ifdef LTC_PROFILE
       t2 <<= 2;
       break;
#endif
           if (y < 3) {
              dsa_free(&key);
           }
       }
       t2 >>= 2;
       fprintf(stderr, "DSA-(%lu, %lu) make_key    took %15llu cycles\n", (unsigned long)groups[x].group*8, (unsigned long)groups[x].modulus*8, t2);
   }
}
#endif


#ifdef MRSA      
/* time various RSA operations */
void time_rsa(void)
{
   rsa_key       key;
   ulong64       t1, t2;
   unsigned char buf[2][2048];
   unsigned long x, y, z, zzz;
   int           err, zz, stat;

   for (x = 1024; x <= 2048; x += 256) {
       t2 = 0;
       for (y = 0; y < 4; y++) {
           t_start();
           t1 = t_read();
           if ((err = rsa_make_key(&yarrow_prng, find_prng("yarrow"), x/8, 65537, &key)) != CRYPT_OK) {
              fprintf(stderr, "\n\nrsa_make_key says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK));
              exit(EXIT_FAILURE);
           }
           t1 = t_read() - t1;
           t2 += t1;

#ifdef LTC_PROFILE
       t2 <<= 2;
       break;
#endif

           if (y < 3) {
              rsa_free(&key);
           }
       }
       t2 >>= 2;
       fprintf(stderr, "RSA-%lu make_key    took %15llu cycles\n", x, t2);

       t2 = 0;
       for (y = 0; y < 16; y++) {
           t_start();
           t1 = t_read();
           z = sizeof(buf[1]);
           if ((err = rsa_encrypt_key(buf[0], 32, buf[1], &z, (const unsigned char *)"testprog", 8, &yarrow_prng,
                                      find_prng("yarrow"), find_hash("sha1"),
                                      &key)) != CRYPT_OK) {
              fprintf(stderr, "\n\nrsa_encrypt_key says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK));
              exit(EXIT_FAILURE);
           }
           t1 = t_read() - t1;
           t2 += t1;
#ifdef LTC_PROFILE
       t2 <<= 4;
       break;
#endif
       }
       t2 >>= 4;
       fprintf(stderr, "RSA-%lu encrypt_key took %15llu cycles\n", x, t2);

       t2 = 0;
       for (y = 0; y < 2048; y++) {
           t_start();
           t1 = t_read();
           zzz = sizeof(buf[0]);
           if ((err = rsa_decrypt_key(buf[1], z, buf[0], &zzz, (const unsigned char *)"testprog", 8,  find_hash("sha1"), 
                                      &zz, &key)) != CRYPT_OK) {
              fprintf(stderr, "\n\nrsa_decrypt_key says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK));
              exit(EXIT_FAILURE);
           }
           t1 = t_read() - t1;
           t2 += t1;
#ifdef LTC_PROFILE
       t2 <<= 11;
       break;
#endif
       }
       t2 >>= 11;
       fprintf(stderr, "RSA-%lu decrypt_key took %15llu cycles\n", x, t2);

       t2 = 0;
       for (y = 0; y < 256; y++) {
          t_start();
          t1 = t_read();
          z = sizeof(buf[1]);
          if ((err = rsa_sign_hash(buf[0], 20, buf[1], &z, &yarrow_prng, 
                                   find_prng("yarrow"), find_hash("sha1"), 8, &key)) != CRYPT_OK) {
              fprintf(stderr, "\n\nrsa_sign_hash says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK));
              exit(EXIT_FAILURE);
           }
           t1 = t_read() - t1;
           t2 += t1;
#ifdef LTC_PROFILE
       t2 <<= 8;
       break;
#endif
	}
        t2 >>= 8;
        fprintf(stderr, "RSA-%lu sign_hash took   %15llu cycles\n", x, t2);

       t2 = 0;
       for (y = 0; y < 2048; y++) {
          t_start();
          t1 = t_read();
          if ((err = rsa_verify_hash(buf[1], z, buf[0], 20, find_hash("sha1"), 8, &stat, &key)) != CRYPT_OK) {
              fprintf(stderr, "\n\nrsa_verify_hash says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK));
              exit(EXIT_FAILURE);
          }
          if (stat == 0) {
             fprintf(stderr, "\n\nrsa_verify_hash for RSA-%lu failed to verify signature(%lu)\n", x, y);
             exit(EXIT_FAILURE);
          }
          t1 = t_read() - t1;
          t2 += t1;
#ifdef LTC_PROFILE
       t2 <<= 11;
       break;
#endif
	}
        t2 >>= 11;
        fprintf(stderr, "RSA-%lu verify_hash took %15llu cycles\n", x, t2);
       fprintf(stderr, "\n\n");
       rsa_free(&key);
  }
}
#else
void time_rsa(void) { fprintf(stderr, "NO RSA\n"); }
#endif

#ifdef MKAT      
/* time various KAT operations */
void time_katja(void)
{
   katja_key key;
   ulong64 t1, t2;
   unsigned char buf[2][4096];
   unsigned long x, y, z, zzz;
   int           err, zz;

   for (x = 1024; x <= 2048; x += 256) {
       t2 = 0;
       for (y = 0; y < 4; y++) {
           t_start();
           t1 = t_read();
           if ((err = katja_make_key(&yarrow_prng, find_prng("yarrow"), x/8, &key)) != CRYPT_OK) {
              fprintf(stderr, "\n\nkatja_make_key says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK));
              exit(EXIT_FAILURE);
           }
           t1 = t_read() - t1;
           t2 += t1;

           if (y < 3) {
              katja_free(&key);
           }
       }
       t2 >>= 2;
       fprintf(stderr, "Katja-%lu make_key    took %15llu cycles\n", x, t2);

       t2 = 0;
       for (y = 0; y < 16; y++) {
           t_start();
           t1 = t_read();
           z = sizeof(buf[1]);
           if ((err = katja_encrypt_key(buf[0], 32, buf[1], &z, "testprog", 8, &yarrow_prng,
                                      find_prng("yarrow"), find_hash("sha1"),
                                      &key)) != CRYPT_OK) {
              fprintf(stderr, "\n\nkatja_encrypt_key says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK));
              exit(EXIT_FAILURE);
           }
           t1 = t_read() - t1;
           t2 += t1;
       }
       t2 >>= 4;
       fprintf(stderr, "Katja-%lu encrypt_key took %15llu cycles\n", x, t2);

       t2 = 0;
       for (y = 0; y < 2048; y++) {
           t_start();
           t1 = t_read();
           zzz = sizeof(buf[0]);
           if ((err = katja_decrypt_key(buf[1], z, buf[0], &zzz, "testprog", 8,  find_hash("sha1"), 
                                      &zz, &key)) != CRYPT_OK) {
              fprintf(stderr, "\n\nkatja_decrypt_key says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK));
              exit(EXIT_FAILURE);
           }
           t1 = t_read() - t1;
           t2 += t1;
       }
       t2 >>= 11;
       fprintf(stderr, "Katja-%lu decrypt_key took %15llu cycles\n", x, t2);


       katja_free(&key);
  }
}
#else
void time_katja(void) { fprintf(stderr, "NO Katja\n"); }
#endif

#ifdef MECC
/* time various ECC operations */
void time_ecc(void)
{
   ecc_key key;
   ulong64 t1, t2;
   unsigned char buf[2][256];
   unsigned long i, w, x, y, z;
   int           err, stat;
   static unsigned long sizes[] = {
#ifdef ECC112
112/8, 
#endif
#ifdef ECC128
128/8, 
#endif
#ifdef ECC160
160/8, 
#endif
#ifdef ECC192
192/8, 
#endif
#ifdef ECC224
224/8,
#endif
#ifdef ECC256
256/8, 
#endif
#ifdef ECC384
384/8, 
#endif
#ifdef ECC521
521/8, 
#endif
100000};

   for (x = sizes[i=0]; x < 100000; x = sizes[++i]) {
       t2 = 0;
       for (y = 0; y < 256; y++) {
           t_start();
           t1 = t_read();
           if ((err = ecc_make_key(&yarrow_prng, find_prng("yarrow"), x, &key)) != CRYPT_OK) {
              fprintf(stderr, "\n\necc_make_key says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK));
              exit(EXIT_FAILURE);
           }
           t1 = t_read() - t1;
           t2 += t1;

#ifdef LTC_PROFILE
       t2 <<= 8;
       break;
#endif

           if (y < 255) {
              ecc_free(&key);
           }
       }
       t2 >>= 8;
       fprintf(stderr, "ECC-%lu make_key    took %15llu cycles\n", x*8, t2);

       t2 = 0;
       for (y = 0; y < 256; y++) {
           t_start();
           t1 = t_read();
           z = sizeof(buf[1]);
           if ((err = ecc_encrypt_key(buf[0], 20, buf[1], &z, &yarrow_prng, find_prng("yarrow"), find_hash("sha1"),
                                      &key)) != CRYPT_OK) {
              fprintf(stderr, "\n\necc_encrypt_key says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK));
              exit(EXIT_FAILURE);
           }
           t1 = t_read() - t1;
           t2 += t1;
#ifdef LTC_PROFILE
       t2 <<= 8;
       break;
#endif
       }
       t2 >>= 8;
       fprintf(stderr, "ECC-%lu encrypt_key took %15llu cycles\n", x*8, t2);

       t2 = 0;
       for (y = 0; y < 256; y++) {
           t_start();
           t1 = t_read();
           w = 20;
           if ((err = ecc_decrypt_key(buf[1], z, buf[0], &w, &key)) != CRYPT_OK) {
              fprintf(stderr, "\n\necc_decrypt_key says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK));
              exit(EXIT_FAILURE);
           }
           t1 = t_read() - t1;
           t2 += t1;
#ifdef LTC_PROFILE
       t2 <<= 8;
       break;
#endif
       }
       t2 >>= 8;
       fprintf(stderr, "ECC-%lu decrypt_key took %15llu cycles\n", x*8, t2);

       t2 = 0;
       for (y = 0; y < 256; y++) {
          t_start();
          t1 = t_read();
          z = sizeof(buf[1]);
          if ((err = ecc_sign_hash(buf[0], 20, buf[1], &z, &yarrow_prng, 
                                   find_prng("yarrow"), &key)) != CRYPT_OK) {
              fprintf(stderr, "\n\necc_sign_hash says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK));
              exit(EXIT_FAILURE);
           }
           t1 = t_read() - t1;
           t2 += t1;
#ifdef LTC_PROFILE
       t2 <<= 8;
       break;
#endif
	}
        t2 >>= 8;
        fprintf(stderr, "ECC-%lu sign_hash took   %15llu cycles\n", x*8, t2);

       t2 = 0;
       for (y = 0; y < 256; y++) {
          t_start();
          t1 = t_read();
          if ((err = ecc_verify_hash(buf[1], z, buf[0], 20, &stat, &key)) != CRYPT_OK) {
              fprintf(stderr, "\n\necc_verify_hash says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK));
              exit(EXIT_FAILURE);
          }
          if (stat == 0) {
             fprintf(stderr, "\n\necc_verify_hash for ECC-%lu failed to verify signature(%lu)\n", x*8, y);
             exit(EXIT_FAILURE);
          }
          t1 = t_read() - t1;
          t2 += t1;
#ifdef LTC_PROFILE
       t2 <<= 8;
       break;
#endif
	}
        t2 >>= 8;
        fprintf(stderr, "ECC-%lu verify_hash took %15llu cycles\n", x*8, t2);

       fprintf(stderr, "\n\n");
       ecc_free(&key);
  }
}
#else
void time_ecc(void) { fprintf(stderr, "NO ECC\n"); }
#endif

void time_macs_(unsigned long MAC_SIZE)
{
   unsigned char *buf, key[16], tag[16];
   ulong64 t1, t2;
   unsigned long x, z;
   int err, cipher_idx, hash_idx;

   fprintf(stderr, "\nMAC Timings (cycles/byte on %luKB blocks):\n", MAC_SIZE);

   buf = XMALLOC(MAC_SIZE*1024);
   if (buf == NULL) {
      fprintf(stderr, "\n\nout of heap yo\n\n");
      exit(EXIT_FAILURE);
   }

   cipher_idx = find_cipher("aes");
   hash_idx   = find_hash("sha1");
   
   if (cipher_idx == -1 || hash_idx == -1) {
      fprintf(stderr, "Warning the MAC tests requires AES and SHA1 to operate... so sorry\n");
      return;
   }

   yarrow_read(buf, MAC_SIZE*1024, &yarrow_prng);
   yarrow_read(key, 16, &yarrow_prng);

#ifdef LTC_OMAC
   t2 = -1;
   for (x = 0; x < 10000; x++) {
        t_start();
        t1 = t_read();
        z = 16;
        if ((err = omac_memory(cipher_idx, key, 16, buf, MAC_SIZE*1024, tag, &z)) != CRYPT_OK) {
           fprintf(stderr, "\n\nomac error... %s\n", error_to_string(err));
           exit(EXIT_FAILURE);
        }
        t1 = t_read() - t1;
        if (t1 < t2) t2 = t1;
   }
   fprintf(stderr, "OMAC-%s\t\t%9llu\n", cipher_descriptor[cipher_idx].name, t2/(ulong64)(MAC_SIZE*1024));
#endif

#ifdef LTC_XCBC
   t2 = -1;
   for (x = 0; x < 10000; x++) {
        t_start();
        t1 = t_read();
        z = 16;
        if ((err = xcbc_memory(cipher_idx, key, 16, buf, MAC_SIZE*1024, tag, &z)) != CRYPT_OK) {
           fprintf(stderr, "\n\nxcbc error... %s\n", error_to_string(err));
           exit(EXIT_FAILURE);
        }
        t1 = t_read() - t1;
        if (t1 < t2) t2 = t1;
   }
   fprintf(stderr, "XCBC-%s\t\t%9llu\n", cipher_descriptor[cipher_idx].name, t2/(ulong64)(MAC_SIZE*1024));
#endif

#ifdef LTC_F9_MODE
   t2 = -1;
   for (x = 0; x < 10000; x++) {
        t_start();
        t1 = t_read();
        z = 16;
        if ((err = f9_memory(cipher_idx, key, 16, buf, MAC_SIZE*1024, tag, &z)) != CRYPT_OK) {
           fprintf(stderr, "\n\nF9 error... %s\n", error_to_string(err));
           exit(EXIT_FAILURE);
        }
        t1 = t_read() - t1;
        if (t1 < t2) t2 = t1;
   }
   fprintf(stderr, "F9-%s\t\t\t%9llu\n", cipher_descriptor[cipher_idx].name, t2/(ulong64)(MAC_SIZE*1024));
#endif

#ifdef LTC_PMAC
   t2 = -1;
   for (x = 0; x < 10000; x++) {
        t_start();
        t1 = t_read();
        z = 16;
        if ((err = pmac_memory(cipher_idx, key, 16, buf, MAC_SIZE*1024, tag, &z)) != CRYPT_OK) {
           fprintf(stderr, "\n\npmac error... %s\n", error_to_string(err));
           exit(EXIT_FAILURE);
        }
        t1 = t_read() - t1;
        if (t1 < t2) t2 = t1;
   }
   fprintf(stderr, "PMAC-AES\t\t%9llu\n", t2/(ulong64)(MAC_SIZE*1024));
#endif

#ifdef PELICAN
   t2 = -1;
   for (x = 0; x < 10000; x++) {
        t_start();
        t1 = t_read();
        z = 16;
        if ((err = pelican_memory(key, 16, buf, MAC_SIZE*1024, tag)) != CRYPT_OK) {
           fprintf(stderr, "\n\npelican error... %s\n", error_to_string(err));
           exit(EXIT_FAILURE);
        }
        t1 = t_read() - t1;
        if (t1 < t2) t2 = t1;
   }
   fprintf(stderr, "PELICAN \t\t%9llu\n", t2/(ulong64)(MAC_SIZE*1024));
#endif

#ifdef LTC_HMAC
   t2 = -1;
   for (x = 0; x < 10000; x++) {
        t_start();
        t1 = t_read();
        z = 16;
        if ((err = hmac_memory(hash_idx, key, 16, buf, MAC_SIZE*1024, tag, &z)) != CRYPT_OK) {
           fprintf(stderr, "\n\nhmac error... %s\n", error_to_string(err));
           exit(EXIT_FAILURE);
        }
        t1 = t_read() - t1;
        if (t1 < t2) t2 = t1;
   }
   fprintf(stderr, "HMAC-%s\t\t%9llu\n", hash_descriptor[hash_idx].name, t2/(ulong64)(MAC_SIZE*1024));
#endif

   XFREE(buf);
}

void time_macs(void)
{
   time_macs_(1);
   time_macs_(4);
   time_macs_(32);
}

void time_encmacs_(unsigned long MAC_SIZE)
{
   unsigned char *buf, IV[16], key[16], tag[16];
   ulong64 t1, t2;
   unsigned long x, z;
   int err, cipher_idx;
   symmetric_key skey;

   fprintf(stderr, "\nENC+MAC Timings (zero byte AAD, 16 byte IV, cycles/byte on %luKB blocks):\n", MAC_SIZE);

   buf = XMALLOC(MAC_SIZE*1024);
   if (buf == NULL) {
      fprintf(stderr, "\n\nout of heap yo\n\n");
      exit(EXIT_FAILURE);
   }

   cipher_idx = find_cipher("aes");

   yarrow_read(buf, MAC_SIZE*1024, &yarrow_prng);
   yarrow_read(key, 16, &yarrow_prng);
   yarrow_read(IV, 16, &yarrow_prng);

#ifdef EAX_MODE
   t2 = -1;
   for (x = 0; x < 10000; x++) {
        t_start();
        t1 = t_read();
        z = 16;
        if ((err = eax_encrypt_authenticate_memory(cipher_idx, key, 16, IV, 16, NULL, 0, buf, MAC_SIZE*1024, buf, tag, &z)) != CRYPT_OK) {
           fprintf(stderr, "\nEAX error... %s\n", error_to_string(err));
           exit(EXIT_FAILURE);
        }
        t1 = t_read() - t1;
        if (t1 < t2) t2 = t1;
   }
   fprintf(stderr, "EAX \t\t\t%9llu\n", t2/(ulong64)(MAC_SIZE*1024));
#endif

#ifdef OCB_MODE
   t2 = -1;
   for (x = 0; x < 10000; x++) {
        t_start();
        t1 = t_read();
        z = 16;
        if ((err = ocb_encrypt_authenticate_memory(cipher_idx, key, 16, IV, buf, MAC_SIZE*1024, buf, tag, &z)) != CRYPT_OK) {
           fprintf(stderr, "\nOCB error... %s\n", error_to_string(err));
           exit(EXIT_FAILURE);
        }
        t1 = t_read() - t1;
        if (t1 < t2) t2 = t1;
   }
   fprintf(stderr, "OCB \t\t\t%9llu\n", t2/(ulong64)(MAC_SIZE*1024));
#endif

#ifdef CCM_MODE
   t2 = -1;
   for (x = 0; x < 10000; x++) {
        t_start();
        t1 = t_read();
        z = 16;
        if ((err = ccm_memory(cipher_idx, key, 16, NULL, IV, 16, NULL, 0, buf, MAC_SIZE*1024, buf, tag, &z, CCM_ENCRYPT)) != CRYPT_OK) {
           fprintf(stderr, "\nCCM error... %s\n", error_to_string(err));
           exit(EXIT_FAILURE);
        }
        t1 = t_read() - t1;
        if (t1 < t2) t2 = t1;
   }
   fprintf(stderr, "CCM (no-precomp) \t%9llu\n", t2/(ulong64)(MAC_SIZE*1024));
   
   cipher_descriptor[cipher_idx].setup(key, 16, 0, &skey);
   t2 = -1;
   for (x = 0; x < 10000; x++) {
        t_start();
        t1 = t_read();
        z = 16;
        if ((err = ccm_memory(cipher_idx, key, 16, &skey, IV, 16, NULL, 0, buf, MAC_SIZE*1024, buf, tag, &z, CCM_ENCRYPT)) != CRYPT_OK) {
           fprintf(stderr, "\nCCM error... %s\n", error_to_string(err));
           exit(EXIT_FAILURE);
        }
        t1 = t_read() - t1;
        if (t1 < t2) t2 = t1;
   }
   fprintf(stderr, "CCM (precomp) \t\t%9llu\n", t2/(ulong64)(MAC_SIZE*1024));
   cipher_descriptor[cipher_idx].done(&skey);   
#endif

#ifdef GCM_MODE
   t2 = -1;
   for (x = 0; x < 100; x++) {
        t_start();
        t1 = t_read();
        z = 16;
        if ((err = gcm_memory(cipher_idx, key, 16, IV, 16, NULL, 0, buf, MAC_SIZE*1024, buf, tag, &z, GCM_ENCRYPT)) != CRYPT_OK) {
           fprintf(stderr, "\nGCM error... %s\n", error_to_string(err));
           exit(EXIT_FAILURE);
        }
        t1 = t_read() - t1;
        if (t1 < t2) t2 = t1;
   }
   fprintf(stderr, "GCM (no-precomp)\t%9llu\n", t2/(ulong64)(MAC_SIZE*1024));

   {
   gcm_state gcm
#ifdef GCM_TABLES_SSE2
__attribute__ ((aligned (16)))
#endif
;

   if ((err = gcm_init(&gcm, cipher_idx, key, 16)) != CRYPT_OK) { fprintf(stderr, "gcm_init: %s\n", error_to_string(err)); exit(EXIT_FAILURE); }
   t2 = -1;
   for (x = 0; x < 10000; x++) {
        t_start();
        t1 = t_read();
        z = 16;
        if ((err = gcm_reset(&gcm)) != CRYPT_OK) {
            fprintf(stderr, "\nGCM error[%d]... %s\n", __LINE__, error_to_string(err));
           exit(EXIT_FAILURE);
        }
        if ((err = gcm_add_iv(&gcm, IV, 16)) != CRYPT_OK) {
            fprintf(stderr, "\nGCM error[%d]... %s\n", __LINE__, error_to_string(err));
           exit(EXIT_FAILURE);
        }
        if ((err = gcm_add_aad(&gcm, NULL, 0)) != CRYPT_OK) {
            fprintf(stderr, "\nGCM error[%d]... %s\n", __LINE__, error_to_string(err));
           exit(EXIT_FAILURE);
        }
        if ((err = gcm_process(&gcm, buf, MAC_SIZE*1024, buf, GCM_ENCRYPT)) != CRYPT_OK) {
            fprintf(stderr, "\nGCM error[%d]... %s\n", __LINE__, error_to_string(err));
           exit(EXIT_FAILURE);
        }
        
        if ((err = gcm_done(&gcm, tag, &z)) != CRYPT_OK) {
            fprintf(stderr, "\nGCM error[%d]... %s\n", __LINE__, error_to_string(err));
           exit(EXIT_FAILURE);
        }
        t1 = t_read() - t1;
        if (t1 < t2) t2 = t1;
   }
   fprintf(stderr, "GCM (precomp)\t\t%9llu\n", t2/(ulong64)(MAC_SIZE*1024));
   }

#endif

} 

void time_encmacs(void)
{
   time_encmacs_(1);
   time_encmacs_(4);
   time_encmacs_(32);
}

/* $Source: /cvs/libtom/libtomcrypt/testprof/x86_prof.c,v $ */
/* $Revision: 1.51 $ */
/* $Date: 2006/11/21 00:10:18 $ */