Mercurial > dropbear
view libtommath/bn_s_mp_exptmod_fast.c @ 1815:5015c80808c5
Use MAX_HOST_LEN for TCP forwarding requests (#121)
tcpip-forward request can include hostname, which is later resolved by getaddrinfo() call.
Dropbear incorrectly assumes tcpip-forward includes only IP(v4) address. Fix this.
author | ValdikSS <iam@valdikss.org.ru> |
---|---|
date | Thu, 18 Mar 2021 16:16:17 +0300 |
parents | 1051e4eea25a |
children |
line wrap: on
line source
#include "tommath_private.h" #ifdef BN_S_MP_EXPTMOD_FAST_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85 * * Uses a left-to-right k-ary sliding window to compute the modular exponentiation. * The value of k changes based on the size of the exponent. * * Uses Montgomery or Diminished Radix reduction [whichever appropriate] */ #ifdef MP_LOW_MEM # define TAB_SIZE 32 # define MAX_WINSIZE 5 #else # define TAB_SIZE 256 # define MAX_WINSIZE 0 #endif mp_err s_mp_exptmod_fast(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode) { mp_int M[TAB_SIZE], res; mp_digit buf, mp; int bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize; mp_err err; /* use a pointer to the reduction algorithm. This allows us to use * one of many reduction algorithms without modding the guts of * the code with if statements everywhere. */ mp_err(*redux)(mp_int *x, const mp_int *n, mp_digit rho); /* find window size */ x = mp_count_bits(X); if (x <= 7) { winsize = 2; } else if (x <= 36) { winsize = 3; } else if (x <= 140) { winsize = 4; } else if (x <= 450) { winsize = 5; } else if (x <= 1303) { winsize = 6; } else if (x <= 3529) { winsize = 7; } else { winsize = 8; } winsize = MAX_WINSIZE ? MP_MIN(MAX_WINSIZE, winsize) : winsize; /* init M array */ /* init first cell */ if ((err = mp_init_size(&M[1], P->alloc)) != MP_OKAY) { return err; } /* now init the second half of the array */ for (x = 1<<(winsize-1); x < (1 << winsize); x++) { if ((err = mp_init_size(&M[x], P->alloc)) != MP_OKAY) { for (y = 1<<(winsize-1); y < x; y++) { mp_clear(&M[y]); } mp_clear(&M[1]); return err; } } /* determine and setup reduction code */ if (redmode == 0) { if (MP_HAS(MP_MONTGOMERY_SETUP)) { /* now setup montgomery */ if ((err = mp_montgomery_setup(P, &mp)) != MP_OKAY) goto LBL_M; } else { err = MP_VAL; goto LBL_M; } /* automatically pick the comba one if available (saves quite a few calls/ifs) */ if (MP_HAS(S_MP_MONTGOMERY_REDUCE_FAST) && (((P->used * 2) + 1) < MP_WARRAY) && (P->used < MP_MAXFAST)) { redux = s_mp_montgomery_reduce_fast; } else if (MP_HAS(MP_MONTGOMERY_REDUCE)) { /* use slower baseline Montgomery method */ redux = mp_montgomery_reduce; } else { err = MP_VAL; goto LBL_M; } } else if (redmode == 1) { if (MP_HAS(MP_DR_SETUP) && MP_HAS(MP_DR_REDUCE)) { /* setup DR reduction for moduli of the form B**k - b */ mp_dr_setup(P, &mp); redux = mp_dr_reduce; } else { err = MP_VAL; goto LBL_M; } } else if (MP_HAS(MP_REDUCE_2K_SETUP) && MP_HAS(MP_REDUCE_2K)) { /* setup DR reduction for moduli of the form 2**k - b */ if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) goto LBL_M; redux = mp_reduce_2k; } else { err = MP_VAL; goto LBL_M; } /* setup result */ if ((err = mp_init_size(&res, P->alloc)) != MP_OKAY) goto LBL_M; /* create M table * * * The first half of the table is not computed though accept for M[0] and M[1] */ if (redmode == 0) { if (MP_HAS(MP_MONTGOMERY_CALC_NORMALIZATION)) { /* now we need R mod m */ if ((err = mp_montgomery_calc_normalization(&res, P)) != MP_OKAY) goto LBL_RES; /* now set M[1] to G * R mod m */ if ((err = mp_mulmod(G, &res, P, &M[1])) != MP_OKAY) goto LBL_RES; } else { err = MP_VAL; goto LBL_RES; } } else { mp_set(&res, 1uL); if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) goto LBL_RES; } /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */ if ((err = mp_copy(&M[1], &M[(size_t)1 << (winsize - 1)])) != MP_OKAY) goto LBL_RES; for (x = 0; x < (winsize - 1); x++) { if ((err = mp_sqr(&M[(size_t)1 << (winsize - 1)], &M[(size_t)1 << (winsize - 1)])) != MP_OKAY) goto LBL_RES; if ((err = redux(&M[(size_t)1 << (winsize - 1)], P, mp)) != MP_OKAY) goto LBL_RES; } /* create upper table */ for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) { if ((err = mp_mul(&M[x - 1], &M[1], &M[x])) != MP_OKAY) goto LBL_RES; if ((err = redux(&M[x], P, mp)) != MP_OKAY) goto LBL_RES; } /* set initial mode and bit cnt */ mode = 0; bitcnt = 1; buf = 0; digidx = X->used - 1; bitcpy = 0; bitbuf = 0; for (;;) { /* grab next digit as required */ if (--bitcnt == 0) { /* if digidx == -1 we are out of digits so break */ if (digidx == -1) { break; } /* read next digit and reset bitcnt */ buf = X->dp[digidx--]; bitcnt = (int)MP_DIGIT_BIT; } /* grab the next msb from the exponent */ y = (mp_digit)(buf >> (MP_DIGIT_BIT - 1)) & 1uL; buf <<= (mp_digit)1; /* if the bit is zero and mode == 0 then we ignore it * These represent the leading zero bits before the first 1 bit * in the exponent. Technically this opt is not required but it * does lower the # of trivial squaring/reductions used */ if ((mode == 0) && (y == 0)) { continue; } /* if the bit is zero and mode == 1 then we square */ if ((mode == 1) && (y == 0)) { if ((err = mp_sqr(&res, &res)) != MP_OKAY) goto LBL_RES; if ((err = redux(&res, P, mp)) != MP_OKAY) goto LBL_RES; continue; } /* else we add it to the window */ bitbuf |= (y << (winsize - ++bitcpy)); mode = 2; if (bitcpy == winsize) { /* ok window is filled so square as required and multiply */ /* square first */ for (x = 0; x < winsize; x++) { if ((err = mp_sqr(&res, &res)) != MP_OKAY) goto LBL_RES; if ((err = redux(&res, P, mp)) != MP_OKAY) goto LBL_RES; } /* then multiply */ if ((err = mp_mul(&res, &M[bitbuf], &res)) != MP_OKAY) goto LBL_RES; if ((err = redux(&res, P, mp)) != MP_OKAY) goto LBL_RES; /* empty window and reset */ bitcpy = 0; bitbuf = 0; mode = 1; } } /* if bits remain then square/multiply */ if ((mode == 2) && (bitcpy > 0)) { /* square then multiply if the bit is set */ for (x = 0; x < bitcpy; x++) { if ((err = mp_sqr(&res, &res)) != MP_OKAY) goto LBL_RES; if ((err = redux(&res, P, mp)) != MP_OKAY) goto LBL_RES; /* get next bit of the window */ bitbuf <<= 1; if ((bitbuf & (1 << winsize)) != 0) { /* then multiply */ if ((err = mp_mul(&res, &M[1], &res)) != MP_OKAY) goto LBL_RES; if ((err = redux(&res, P, mp)) != MP_OKAY) goto LBL_RES; } } } if (redmode == 0) { /* fixup result if Montgomery reduction is used * recall that any value in a Montgomery system is * actually multiplied by R mod n. So we have * to reduce one more time to cancel out the factor * of R. */ if ((err = redux(&res, P, mp)) != MP_OKAY) goto LBL_RES; } /* swap res with Y */ mp_exch(&res, Y); err = MP_OKAY; LBL_RES: mp_clear(&res); LBL_M: mp_clear(&M[1]); for (x = 1<<(winsize-1); x < (1 << winsize); x++) { mp_clear(&M[x]); } return err; } #endif