Mercurial > dropbear
view libtomcrypt/src/encauth/ccm/ccm_memory.c @ 994:5c5ade336926
Prefer stronger algorithms in algorithm negotiation.
Prefer diffie-hellman-group14-sha1 (2048 bit) over
diffie-hellman-group1-sha1 (1024 bit).
Due to meet-in-the-middle attacks the effective key length of
three key 3DES is 112 bits. AES is stronger and faster then 3DES.
Prefer to delay the start of compression until after authentication
has completed. This avoids exposing compression code to attacks
from unauthenticated users.
(github pull request #9)
author | Fedor Brunner <fedor.brunner@azet.sk> |
---|---|
date | Fri, 23 Jan 2015 23:00:25 +0800 |
parents | 0cbe8f6dbf9e |
children | f849a5ca2efc |
line wrap: on
line source
/* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, [email protected], http://libtomcrypt.com */ #include "tomcrypt.h" /** @file ccm_memory.c CCM support, process a block of memory, Tom St Denis */ #ifdef CCM_MODE /** CCM encrypt/decrypt and produce an authentication tag @param cipher The index of the cipher desired @param key The secret key to use @param keylen The length of the secret key (octets) @param uskey A previously scheduled key [optional can be NULL] @param nonce The session nonce [use once] @param noncelen The length of the nonce @param header The header for the session @param headerlen The length of the header (octets) @param pt [out] The plaintext @param ptlen The length of the plaintext (octets) @param ct [out] The ciphertext @param tag [out] The destination tag @param taglen [in/out] The max size and resulting size of the authentication tag @param direction Encrypt or Decrypt direction (0 or 1) @return CRYPT_OK if successful */ int ccm_memory(int cipher, const unsigned char *key, unsigned long keylen, symmetric_key *uskey, const unsigned char *nonce, unsigned long noncelen, const unsigned char *header, unsigned long headerlen, unsigned char *pt, unsigned long ptlen, unsigned char *ct, unsigned char *tag, unsigned long *taglen, int direction) { unsigned char PAD[16], ctr[16], CTRPAD[16], b; symmetric_key *skey; int err; unsigned long len, L, x, y, z, CTRlen; if (uskey == NULL) { LTC_ARGCHK(key != NULL); } LTC_ARGCHK(nonce != NULL); if (headerlen > 0) { LTC_ARGCHK(header != NULL); } LTC_ARGCHK(pt != NULL); LTC_ARGCHK(ct != NULL); LTC_ARGCHK(tag != NULL); LTC_ARGCHK(taglen != NULL); #ifdef LTC_FAST if (16 % sizeof(LTC_FAST_TYPE)) { return CRYPT_INVALID_ARG; } #endif /* check cipher input */ if ((err = cipher_is_valid(cipher)) != CRYPT_OK) { return err; } if (cipher_descriptor[cipher].block_length != 16) { return CRYPT_INVALID_CIPHER; } /* make sure the taglen is even and <= 16 */ *taglen &= ~1; if (*taglen > 16) { *taglen = 16; } /* can't use < 4 */ if (*taglen < 4) { return CRYPT_INVALID_ARG; } /* is there an accelerator? */ if (cipher_descriptor[cipher].accel_ccm_memory != NULL) { return cipher_descriptor[cipher].accel_ccm_memory( key, keylen, uskey, nonce, noncelen, header, headerlen, pt, ptlen, ct, tag, taglen, direction); } /* let's get the L value */ len = ptlen; L = 0; while (len) { ++L; len >>= 8; } if (L <= 1) { L = 2; } /* increase L to match the nonce len */ noncelen = (noncelen > 13) ? 13 : noncelen; if ((15 - noncelen) > L) { L = 15 - noncelen; } /* decrease noncelen to match L */ if ((noncelen + L) > 15) { noncelen = 15 - L; } /* allocate mem for the symmetric key */ if (uskey == NULL) { skey = XMALLOC(sizeof(*skey)); if (skey == NULL) { return CRYPT_MEM; } /* initialize the cipher */ if ((err = cipher_descriptor[cipher].setup(key, keylen, 0, skey)) != CRYPT_OK) { XFREE(skey); return err; } } else { skey = uskey; } /* form B_0 == flags | Nonce N | l(m) */ x = 0; PAD[x++] = (unsigned char)(((headerlen > 0) ? (1<<6) : 0) | (((*taglen - 2)>>1)<<3) | (L-1)); /* nonce */ for (y = 0; y < (16 - (L + 1)); y++) { PAD[x++] = nonce[y]; } /* store len */ len = ptlen; /* shift len so the upper bytes of len are the contents of the length */ for (y = L; y < 4; y++) { len <<= 8; } /* store l(m) (only store 32-bits) */ for (y = 0; L > 4 && (L-y)>4; y++) { PAD[x++] = 0; } for (; y < L; y++) { PAD[x++] = (unsigned char)((len >> 24) & 255); len <<= 8; } /* encrypt PAD */ if ((err = cipher_descriptor[cipher].ecb_encrypt(PAD, PAD, skey)) != CRYPT_OK) { goto error; } /* handle header */ if (headerlen > 0) { x = 0; /* store length */ if (headerlen < ((1UL<<16) - (1UL<<8))) { PAD[x++] ^= (headerlen>>8) & 255; PAD[x++] ^= headerlen & 255; } else { PAD[x++] ^= 0xFF; PAD[x++] ^= 0xFE; PAD[x++] ^= (headerlen>>24) & 255; PAD[x++] ^= (headerlen>>16) & 255; PAD[x++] ^= (headerlen>>8) & 255; PAD[x++] ^= headerlen & 255; } /* now add the data */ for (y = 0; y < headerlen; y++) { if (x == 16) { /* full block so let's encrypt it */ if ((err = cipher_descriptor[cipher].ecb_encrypt(PAD, PAD, skey)) != CRYPT_OK) { goto error; } x = 0; } PAD[x++] ^= header[y]; } /* remainder? */ if (x != 0) { if ((err = cipher_descriptor[cipher].ecb_encrypt(PAD, PAD, skey)) != CRYPT_OK) { goto error; } } } /* setup the ctr counter */ x = 0; /* flags */ ctr[x++] = (unsigned char)L-1; /* nonce */ for (y = 0; y < (16 - (L+1)); ++y) { ctr[x++] = nonce[y]; } /* offset */ while (x < 16) { ctr[x++] = 0; } x = 0; CTRlen = 16; /* now handle the PT */ if (ptlen > 0) { y = 0; #ifdef LTC_FAST if (ptlen & ~15) { if (direction == CCM_ENCRYPT) { for (; y < (ptlen & ~15); y += 16) { /* increment the ctr? */ for (z = 15; z > 15-L; z--) { ctr[z] = (ctr[z] + 1) & 255; if (ctr[z]) break; } if ((err = cipher_descriptor[cipher].ecb_encrypt(ctr, CTRPAD, skey)) != CRYPT_OK) { goto error; } /* xor the PT against the pad first */ for (z = 0; z < 16; z += sizeof(LTC_FAST_TYPE)) { *((LTC_FAST_TYPE*)(&PAD[z])) ^= *((LTC_FAST_TYPE*)(&pt[y+z])); *((LTC_FAST_TYPE*)(&ct[y+z])) = *((LTC_FAST_TYPE*)(&pt[y+z])) ^ *((LTC_FAST_TYPE*)(&CTRPAD[z])); } if ((err = cipher_descriptor[cipher].ecb_encrypt(PAD, PAD, skey)) != CRYPT_OK) { goto error; } } } else { for (; y < (ptlen & ~15); y += 16) { /* increment the ctr? */ for (z = 15; z > 15-L; z--) { ctr[z] = (ctr[z] + 1) & 255; if (ctr[z]) break; } if ((err = cipher_descriptor[cipher].ecb_encrypt(ctr, CTRPAD, skey)) != CRYPT_OK) { goto error; } /* xor the PT against the pad last */ for (z = 0; z < 16; z += sizeof(LTC_FAST_TYPE)) { *((LTC_FAST_TYPE*)(&pt[y+z])) = *((LTC_FAST_TYPE*)(&ct[y+z])) ^ *((LTC_FAST_TYPE*)(&CTRPAD[z])); *((LTC_FAST_TYPE*)(&PAD[z])) ^= *((LTC_FAST_TYPE*)(&pt[y+z])); } if ((err = cipher_descriptor[cipher].ecb_encrypt(PAD, PAD, skey)) != CRYPT_OK) { goto error; } } } } #endif for (; y < ptlen; y++) { /* increment the ctr? */ if (CTRlen == 16) { for (z = 15; z > 15-L; z--) { ctr[z] = (ctr[z] + 1) & 255; if (ctr[z]) break; } if ((err = cipher_descriptor[cipher].ecb_encrypt(ctr, CTRPAD, skey)) != CRYPT_OK) { goto error; } CTRlen = 0; } /* if we encrypt we add the bytes to the MAC first */ if (direction == CCM_ENCRYPT) { b = pt[y]; ct[y] = b ^ CTRPAD[CTRlen++]; } else { b = ct[y] ^ CTRPAD[CTRlen++]; pt[y] = b; } if (x == 16) { if ((err = cipher_descriptor[cipher].ecb_encrypt(PAD, PAD, skey)) != CRYPT_OK) { goto error; } x = 0; } PAD[x++] ^= b; } if (x != 0) { if ((err = cipher_descriptor[cipher].ecb_encrypt(PAD, PAD, skey)) != CRYPT_OK) { goto error; } } } /* setup CTR for the TAG (zero the count) */ for (y = 15; y > 15 - L; y--) { ctr[y] = 0x00; } if ((err = cipher_descriptor[cipher].ecb_encrypt(ctr, CTRPAD, skey)) != CRYPT_OK) { goto error; } if (skey != uskey) { cipher_descriptor[cipher].done(skey); } /* store the TAG */ for (x = 0; x < 16 && x < *taglen; x++) { tag[x] = PAD[x] ^ CTRPAD[x]; } *taglen = x; #ifdef LTC_CLEAN_STACK zeromem(skey, sizeof(*skey)); zeromem(PAD, sizeof(PAD)); zeromem(CTRPAD, sizeof(CTRPAD)); #endif error: if (skey != uskey) { XFREE(skey); } return err; } #endif /* $Source: /cvs/libtom/libtomcrypt/src/encauth/ccm/ccm_memory.c,v $ */ /* $Revision: 1.18 $ */ /* $Date: 2006/12/04 21:34:03 $ */