Mercurial > dropbear
view libtomcrypt/src/pk/ecc/ecc_verify_hash.c @ 994:5c5ade336926
Prefer stronger algorithms in algorithm negotiation.
Prefer diffie-hellman-group14-sha1 (2048 bit) over
diffie-hellman-group1-sha1 (1024 bit).
Due to meet-in-the-middle attacks the effective key length of
three key 3DES is 112 bits. AES is stronger and faster then 3DES.
Prefer to delay the start of compression until after authentication
has completed. This avoids exposing compression code to attacks
from unauthenticated users.
(github pull request #9)
author | Fedor Brunner <fedor.brunner@azet.sk> |
---|---|
date | Fri, 23 Jan 2015 23:00:25 +0800 |
parents | ac2158e3e403 |
children | f849a5ca2efc |
line wrap: on
line source
/* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, [email protected], http://libtomcrypt.com */ /* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b * * All curves taken from NIST recommendation paper of July 1999 * Available at http://csrc.nist.gov/cryptval/dss.htm */ #include "tomcrypt.h" /** @file ecc_verify_hash.c ECC Crypto, Tom St Denis */ #if defined(MECC) && defined(LTC_DER) /* verify * * w = s^-1 mod n * u1 = xw * u2 = rw * X = u1*G + u2*Q * v = X_x1 mod n * accept if v == r */ /** Verify an ECC signature @param sig The signature to verify @param siglen The length of the signature (octets) @param hash The hash (message digest) that was signed @param hashlen The length of the hash (octets) @param stat Result of signature, 1==valid, 0==invalid @param key The corresponding public ECC key @return CRYPT_OK if successful (even if the signature is not valid) */ int ecc_verify_hash(const unsigned char *sig, unsigned long siglen, const unsigned char *hash, unsigned long hashlen, int *stat, ecc_key *key) { ecc_point *mG, *mQ; void *r, *s, *v, *w, *u1, *u2, *e, *p, *m; void *mp; int err; LTC_ARGCHK(sig != NULL); LTC_ARGCHK(hash != NULL); LTC_ARGCHK(stat != NULL); LTC_ARGCHK(key != NULL); /* default to invalid signature */ *stat = 0; mp = NULL; /* is the IDX valid ? */ if (ltc_ecc_is_valid_idx(key->idx) != 1) { return CRYPT_PK_INVALID_TYPE; } /* allocate ints */ if ((err = mp_init_multi(&r, &s, &v, &w, &u1, &u2, &p, &e, &m, NULL)) != CRYPT_OK) { return CRYPT_MEM; } /* allocate points */ mG = ltc_ecc_new_point(); mQ = ltc_ecc_new_point(); if (mQ == NULL || mG == NULL) { err = CRYPT_MEM; goto error; } /* parse header */ if ((err = der_decode_sequence_multi(sig, siglen, LTC_ASN1_INTEGER, 1UL, r, LTC_ASN1_INTEGER, 1UL, s, LTC_ASN1_EOL, 0UL, NULL)) != CRYPT_OK) { goto error; } /* get the order */ if ((err = mp_read_radix(p, (char *)key->dp->order, 16)) != CRYPT_OK) { goto error; } /* get the modulus */ if ((err = mp_read_radix(m, (char *)key->dp->prime, 16)) != CRYPT_OK) { goto error; } /* check for zero */ if (mp_iszero(r) || mp_iszero(s) || mp_cmp(r, p) != LTC_MP_LT || mp_cmp(s, p) != LTC_MP_LT) { err = CRYPT_INVALID_PACKET; goto error; } /* read hash */ if ((err = mp_read_unsigned_bin(e, (unsigned char *)hash, (int)hashlen)) != CRYPT_OK) { goto error; } /* w = s^-1 mod n */ if ((err = mp_invmod(s, p, w)) != CRYPT_OK) { goto error; } /* u1 = ew */ if ((err = mp_mulmod(e, w, p, u1)) != CRYPT_OK) { goto error; } /* u2 = rw */ if ((err = mp_mulmod(r, w, p, u2)) != CRYPT_OK) { goto error; } /* find mG and mQ */ if ((err = mp_read_radix(mG->x, (char *)key->dp->Gx, 16)) != CRYPT_OK) { goto error; } if ((err = mp_read_radix(mG->y, (char *)key->dp->Gy, 16)) != CRYPT_OK) { goto error; } if ((err = mp_set(mG->z, 1)) != CRYPT_OK) { goto error; } if ((err = mp_copy(key->pubkey.x, mQ->x)) != CRYPT_OK) { goto error; } if ((err = mp_copy(key->pubkey.y, mQ->y)) != CRYPT_OK) { goto error; } if ((err = mp_copy(key->pubkey.z, mQ->z)) != CRYPT_OK) { goto error; } /* compute u1*mG + u2*mQ = mG */ if (ltc_mp.ecc_mul2add == NULL) { if ((err = ltc_mp.ecc_ptmul(u1, mG, mG, m, 0)) != CRYPT_OK) { goto error; } if ((err = ltc_mp.ecc_ptmul(u2, mQ, mQ, m, 0)) != CRYPT_OK) { goto error; } /* find the montgomery mp */ if ((err = mp_montgomery_setup(m, &mp)) != CRYPT_OK) { goto error; } /* add them */ if ((err = ltc_mp.ecc_ptadd(mQ, mG, mG, m, mp)) != CRYPT_OK) { goto error; } /* reduce */ if ((err = ltc_mp.ecc_map(mG, m, mp)) != CRYPT_OK) { goto error; } } else { /* use Shamir's trick to compute u1*mG + u2*mQ using half of the doubles */ if ((err = ltc_mp.ecc_mul2add(mG, u1, mQ, u2, mG, m)) != CRYPT_OK) { goto error; } } /* v = X_x1 mod n */ if ((err = mp_mod(mG->x, p, v)) != CRYPT_OK) { goto error; } /* does v == r */ if (mp_cmp(v, r) == LTC_MP_EQ) { *stat = 1; } /* clear up and return */ err = CRYPT_OK; error: ltc_ecc_del_point(mG); ltc_ecc_del_point(mQ); mp_clear_multi(r, s, v, w, u1, u2, p, e, m, NULL); if (mp != NULL) { mp_montgomery_free(mp); } return err; } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/ecc/ecc_verify_hash.c,v $ */ /* $Revision: 1.12 $ */ /* $Date: 2006/12/04 05:07:59 $ */