view libtomcrypt/src/pk/ecc/ltc_ecc_mul2add.c @ 994:5c5ade336926

Prefer stronger algorithms in algorithm negotiation. Prefer diffie-hellman-group14-sha1 (2048 bit) over diffie-hellman-group1-sha1 (1024 bit). Due to meet-in-the-middle attacks the effective key length of three key 3DES is 112 bits. AES is stronger and faster then 3DES. Prefer to delay the start of compression until after authentication has completed. This avoids exposing compression code to attacks from unauthenticated users. (github pull request #9)
author Fedor Brunner <fedor.brunner@azet.sk>
date Fri, 23 Jan 2015 23:00:25 +0800
parents 0cbe8f6dbf9e
children f849a5ca2efc
line wrap: on
line source

/* LibTomCrypt, modular cryptographic library -- Tom St Denis
 *
 * LibTomCrypt is a library that provides various cryptographic
 * algorithms in a highly modular and flexible manner.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtomcrypt.com
 */

/* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b
 *
 * All curves taken from NIST recommendation paper of July 1999
 * Available at http://csrc.nist.gov/cryptval/dss.htm
 */
#include "tomcrypt.h"

/**
  @file ltc_ecc_mul2add.c
  ECC Crypto, Shamir's Trick, Tom St Denis
*/  

#ifdef MECC

#ifdef LTC_ECC_SHAMIR

/** Computes kA*A + kB*B = C using Shamir's Trick
  @param A        First point to multiply
  @param kA       What to multiple A by
  @param B        Second point to multiply
  @param kB       What to multiple B by
  @param C        [out] Destination point (can overlap with A or B
  @param modulus  Modulus for curve 
  @return CRYPT_OK on success
*/ 
int ltc_ecc_mul2add(ecc_point *A, void *kA,
                    ecc_point *B, void *kB,
                    ecc_point *C,
                         void *modulus)
{
  ecc_point     *precomp[16];
  unsigned       bitbufA, bitbufB, lenA, lenB, len, x, y, nA, nB, nibble;
  unsigned char *tA, *tB;
  int            err, first;
  void          *mp, *mu;
 
  /* argchks */
  LTC_ARGCHK(A       != NULL);
  LTC_ARGCHK(B       != NULL);
  LTC_ARGCHK(C       != NULL);
  LTC_ARGCHK(kA      != NULL);
  LTC_ARGCHK(kB      != NULL);
  LTC_ARGCHK(modulus != NULL);

  /* allocate memory */
  tA = XCALLOC(1, ECC_BUF_SIZE);
  if (tA == NULL) {
     return CRYPT_MEM;
  }
  tB = XCALLOC(1, ECC_BUF_SIZE);
  if (tB == NULL) {
     XFREE(tA);
     return CRYPT_MEM;
  }

  /* get sizes */
  lenA = mp_unsigned_bin_size(kA);
  lenB = mp_unsigned_bin_size(kB);
  len  = MAX(lenA, lenB);

  /* sanity check */
  if ((lenA > ECC_BUF_SIZE) || (lenB > ECC_BUF_SIZE)) {
     err = CRYPT_INVALID_ARG;
     goto ERR_T;
  }

  /* extract and justify kA */
  mp_to_unsigned_bin(kA, (len - lenA) + tA);

  /* extract and justify kB */
  mp_to_unsigned_bin(kB, (len - lenB) + tB);

  /* allocate the table */
  for (x = 0; x < 16; x++) {
     precomp[x] = ltc_ecc_new_point();
     if (precomp[x] == NULL) {
         for (y = 0; y < x; ++y) {
            ltc_ecc_del_point(precomp[y]);
         }
         err = CRYPT_MEM;
         goto ERR_T;
     }
  }

   /* init montgomery reduction */
   if ((err = mp_montgomery_setup(modulus, &mp)) != CRYPT_OK) {
      goto ERR_P;
   }
   if ((err = mp_init(&mu)) != CRYPT_OK) {
      goto ERR_MP;
   }
   if ((err = mp_montgomery_normalization(mu, modulus)) != CRYPT_OK) {
      goto ERR_MU;
   }

  /* copy ones ... */
  if ((err = mp_mulmod(A->x, mu, modulus, precomp[1]->x)) != CRYPT_OK)                                         { goto ERR_MU; }
  if ((err = mp_mulmod(A->y, mu, modulus, precomp[1]->y)) != CRYPT_OK)                                         { goto ERR_MU; }
  if ((err = mp_mulmod(A->z, mu, modulus, precomp[1]->z)) != CRYPT_OK)                                         { goto ERR_MU; }

  if ((err = mp_mulmod(B->x, mu, modulus, precomp[1<<2]->x)) != CRYPT_OK)                                      { goto ERR_MU; }
  if ((err = mp_mulmod(B->y, mu, modulus, precomp[1<<2]->y)) != CRYPT_OK)                                      { goto ERR_MU; }
  if ((err = mp_mulmod(B->z, mu, modulus, precomp[1<<2]->z)) != CRYPT_OK)                                      { goto ERR_MU; }

  /* precomp [i,0](A + B) table */
  if ((err = ltc_mp.ecc_ptdbl(precomp[1], precomp[2], modulus, mp)) != CRYPT_OK)                               { goto ERR_MU; }
  if ((err = ltc_mp.ecc_ptadd(precomp[1], precomp[2], precomp[3], modulus, mp)) != CRYPT_OK)                   { goto ERR_MU; }

  /* precomp [0,i](A + B) table */
  if ((err = ltc_mp.ecc_ptdbl(precomp[1<<2], precomp[2<<2], modulus, mp)) != CRYPT_OK)                         { goto ERR_MU; }
  if ((err = ltc_mp.ecc_ptadd(precomp[1<<2], precomp[2<<2], precomp[3<<2], modulus, mp)) != CRYPT_OK)          { goto ERR_MU; }

  /* precomp [i,j](A + B) table (i != 0, j != 0) */
  for (x = 1; x < 4; x++) {
     for (y = 1; y < 4; y++) {
        if ((err = ltc_mp.ecc_ptadd(precomp[x], precomp[(y<<2)], precomp[x+(y<<2)], modulus, mp)) != CRYPT_OK) { goto ERR_MU; }
     }
  }   

  nibble  = 3;
  first   = 1;
  bitbufA = tA[0];
  bitbufB = tB[0];

  /* for every byte of the multiplicands */
  for (x = -1;; ) {
     /* grab a nibble */
     if (++nibble == 4) {
        ++x; if (x == len) break;
        bitbufA = tA[x];
        bitbufB = tB[x];
        nibble  = 0;
     }

     /* extract two bits from both, shift/update */
     nA = (bitbufA >> 6) & 0x03;
     nB = (bitbufB >> 6) & 0x03;
     bitbufA = (bitbufA << 2) & 0xFF;   
     bitbufB = (bitbufB << 2) & 0xFF;   

     /* if both zero, if first, continue */
     if ((nA == 0) && (nB == 0) && (first == 1)) {
        continue;
     }

     /* double twice, only if this isn't the first */
     if (first == 0) {
        /* double twice */
        if ((err = ltc_mp.ecc_ptdbl(C, C, modulus, mp)) != CRYPT_OK)                  { goto ERR_MU; }
        if ((err = ltc_mp.ecc_ptdbl(C, C, modulus, mp)) != CRYPT_OK)                  { goto ERR_MU; }
     }

     /* if not both zero */
     if ((nA != 0) || (nB != 0)) {
        if (first == 1) {
           /* if first, copy from table */
           first = 0;
           if ((err = mp_copy(precomp[nA + (nB<<2)]->x, C->x)) != CRYPT_OK)           { goto ERR_MU; }
           if ((err = mp_copy(precomp[nA + (nB<<2)]->y, C->y)) != CRYPT_OK)           { goto ERR_MU; }
           if ((err = mp_copy(precomp[nA + (nB<<2)]->z, C->z)) != CRYPT_OK)           { goto ERR_MU; }
        } else {
           /* if not first, add from table */
           if ((err = ltc_mp.ecc_ptadd(C, precomp[nA + (nB<<2)], C, modulus, mp)) != CRYPT_OK) { goto ERR_MU; }
        }
     }
  }

  /* reduce to affine */
  err = ltc_ecc_map(C, modulus, mp);

  /* clean up */
ERR_MU:
   mp_clear(mu);
ERR_MP:
   mp_montgomery_free(mp);
ERR_P:
   for (x = 0; x < 16; x++) {
       ltc_ecc_del_point(precomp[x]);
   }
ERR_T:
#ifdef LTC_CLEAN_STACK
   zeromem(tA, ECC_BUF_SIZE);
   zeromem(tB, ECC_BUF_SIZE);
#endif
   XFREE(tA);
   XFREE(tB);

   return err;
}

#endif
#endif

/* $Source: /cvs/libtom/libtomcrypt/src/pk/ecc/ltc_ecc_mul2add.c,v $ */
/* $Revision: 1.6 $ */
/* $Date: 2006/12/04 05:07:59 $ */