Mercurial > dropbear
view libtommath/bn_mp_karatsuba_mul.c @ 994:5c5ade336926
Prefer stronger algorithms in algorithm negotiation.
Prefer diffie-hellman-group14-sha1 (2048 bit) over
diffie-hellman-group1-sha1 (1024 bit).
Due to meet-in-the-middle attacks the effective key length of
three key 3DES is 112 bits. AES is stronger and faster then 3DES.
Prefer to delay the start of compression until after authentication
has completed. This avoids exposing compression code to attacks
from unauthenticated users.
(github pull request #9)
author | Fedor Brunner <fedor.brunner@azet.sk> |
---|---|
date | Fri, 23 Jan 2015 23:00:25 +0800 |
parents | 5ff8218bcee9 |
children | 60fc6476e044 |
line wrap: on
line source
#include <tommath.h> #ifdef BN_MP_KARATSUBA_MUL_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, [email protected], http://math.libtomcrypt.com */ /* c = |a| * |b| using Karatsuba Multiplication using * three half size multiplications * * Let B represent the radix [e.g. 2**DIGIT_BIT] and * let n represent half of the number of digits in * the min(a,b) * * a = a1 * B**n + a0 * b = b1 * B**n + b0 * * Then, a * b => a1b1 * B**2n + ((a1 + a0)(b1 + b0) - (a0b0 + a1b1)) * B + a0b0 * * Note that a1b1 and a0b0 are used twice and only need to be * computed once. So in total three half size (half # of * digit) multiplications are performed, a0b0, a1b1 and * (a1+b1)(a0+b0) * * Note that a multiplication of half the digits requires * 1/4th the number of single precision multiplications so in * total after one call 25% of the single precision multiplications * are saved. Note also that the call to mp_mul can end up back * in this function if the a0, a1, b0, or b1 are above the threshold. * This is known as divide-and-conquer and leads to the famous * O(N**lg(3)) or O(N**1.584) work which is asymptopically lower than * the standard O(N**2) that the baseline/comba methods use. * Generally though the overhead of this method doesn't pay off * until a certain size (N ~ 80) is reached. */ int mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c) { mp_int x0, x1, y0, y1, t1, x0y0, x1y1; int B, err; /* default the return code to an error */ err = MP_MEM; /* min # of digits */ B = MIN (a->used, b->used); /* now divide in two */ B = B >> 1; /* init copy all the temps */ if (mp_init_size (&x0, B) != MP_OKAY) goto ERR; if (mp_init_size (&x1, a->used - B) != MP_OKAY) goto X0; if (mp_init_size (&y0, B) != MP_OKAY) goto X1; if (mp_init_size (&y1, b->used - B) != MP_OKAY) goto Y0; /* init temps */ if (mp_init_size (&t1, B * 2) != MP_OKAY) goto Y1; if (mp_init_size (&x0y0, B * 2) != MP_OKAY) goto T1; if (mp_init_size (&x1y1, B * 2) != MP_OKAY) goto X0Y0; /* now shift the digits */ x0.used = y0.used = B; x1.used = a->used - B; y1.used = b->used - B; { register int x; register mp_digit *tmpa, *tmpb, *tmpx, *tmpy; /* we copy the digits directly instead of using higher level functions * since we also need to shift the digits */ tmpa = a->dp; tmpb = b->dp; tmpx = x0.dp; tmpy = y0.dp; for (x = 0; x < B; x++) { *tmpx++ = *tmpa++; *tmpy++ = *tmpb++; } tmpx = x1.dp; for (x = B; x < a->used; x++) { *tmpx++ = *tmpa++; } tmpy = y1.dp; for (x = B; x < b->used; x++) { *tmpy++ = *tmpb++; } } /* only need to clamp the lower words since by definition the * upper words x1/y1 must have a known number of digits */ mp_clamp (&x0); mp_clamp (&y0); /* now calc the products x0y0 and x1y1 */ /* after this x0 is no longer required, free temp [x0==t2]! */ if (mp_mul (&x0, &y0, &x0y0) != MP_OKAY) goto X1Y1; /* x0y0 = x0*y0 */ if (mp_mul (&x1, &y1, &x1y1) != MP_OKAY) goto X1Y1; /* x1y1 = x1*y1 */ /* now calc x1+x0 and y1+y0 */ if (s_mp_add (&x1, &x0, &t1) != MP_OKAY) goto X1Y1; /* t1 = x1 - x0 */ if (s_mp_add (&y1, &y0, &x0) != MP_OKAY) goto X1Y1; /* t2 = y1 - y0 */ if (mp_mul (&t1, &x0, &t1) != MP_OKAY) goto X1Y1; /* t1 = (x1 + x0) * (y1 + y0) */ /* add x0y0 */ if (mp_add (&x0y0, &x1y1, &x0) != MP_OKAY) goto X1Y1; /* t2 = x0y0 + x1y1 */ if (s_mp_sub (&t1, &x0, &t1) != MP_OKAY) goto X1Y1; /* t1 = (x1+x0)*(y1+y0) - (x1y1 + x0y0) */ /* shift by B */ if (mp_lshd (&t1, B) != MP_OKAY) goto X1Y1; /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */ if (mp_lshd (&x1y1, B * 2) != MP_OKAY) goto X1Y1; /* x1y1 = x1y1 << 2*B */ if (mp_add (&x0y0, &t1, &t1) != MP_OKAY) goto X1Y1; /* t1 = x0y0 + t1 */ if (mp_add (&t1, &x1y1, c) != MP_OKAY) goto X1Y1; /* t1 = x0y0 + t1 + x1y1 */ /* Algorithm succeeded set the return code to MP_OKAY */ err = MP_OKAY; X1Y1:mp_clear (&x1y1); X0Y0:mp_clear (&x0y0); T1:mp_clear (&t1); Y1:mp_clear (&y1); Y0:mp_clear (&y0); X1:mp_clear (&x1); X0:mp_clear (&x0); ERR: return err; } #endif /* $Source: /cvs/libtom/libtommath/bn_mp_karatsuba_mul.c,v $ */ /* $Revision: 1.5 $ */ /* $Date: 2006/03/31 14:18:44 $ */