Mercurial > dropbear
view libtommath/etc/mersenne.c @ 994:5c5ade336926
Prefer stronger algorithms in algorithm negotiation.
Prefer diffie-hellman-group14-sha1 (2048 bit) over
diffie-hellman-group1-sha1 (1024 bit).
Due to meet-in-the-middle attacks the effective key length of
three key 3DES is 112 bits. AES is stronger and faster then 3DES.
Prefer to delay the start of compression until after authentication
has completed. This avoids exposing compression code to attacks
from unauthenticated users.
(github pull request #9)
author | Fedor Brunner <fedor.brunner@azet.sk> |
---|---|
date | Fri, 23 Jan 2015 23:00:25 +0800 |
parents | 5ff8218bcee9 |
children | 60fc6476e044 |
line wrap: on
line source
/* Finds Mersenne primes using the Lucas-Lehmer test * * Tom St Denis, [email protected] */ #include <time.h> #include <tommath.h> int is_mersenne (long s, int *pp) { mp_int n, u; int res, k; *pp = 0; if ((res = mp_init (&n)) != MP_OKAY) { return res; } if ((res = mp_init (&u)) != MP_OKAY) { goto LBL_N; } /* n = 2^s - 1 */ if ((res = mp_2expt(&n, s)) != MP_OKAY) { goto LBL_MU; } if ((res = mp_sub_d (&n, 1, &n)) != MP_OKAY) { goto LBL_MU; } /* set u=4 */ mp_set (&u, 4); /* for k=1 to s-2 do */ for (k = 1; k <= s - 2; k++) { /* u = u^2 - 2 mod n */ if ((res = mp_sqr (&u, &u)) != MP_OKAY) { goto LBL_MU; } if ((res = mp_sub_d (&u, 2, &u)) != MP_OKAY) { goto LBL_MU; } /* make sure u is positive */ while (u.sign == MP_NEG) { if ((res = mp_add (&u, &n, &u)) != MP_OKAY) { goto LBL_MU; } } /* reduce */ if ((res = mp_reduce_2k (&u, &n, 1)) != MP_OKAY) { goto LBL_MU; } } /* if u == 0 then its prime */ if (mp_iszero (&u) == 1) { mp_prime_is_prime(&n, 8, pp); if (*pp != 1) printf("FAILURE\n"); } res = MP_OKAY; LBL_MU:mp_clear (&u); LBL_N:mp_clear (&n); return res; } /* square root of a long < 65536 */ long i_sqrt (long x) { long x1, x2; x2 = 16; do { x1 = x2; x2 = x1 - ((x1 * x1) - x) / (2 * x1); } while (x1 != x2); if (x1 * x1 > x) { --x1; } return x1; } /* is the long prime by brute force */ int isprime (long k) { long y, z; y = i_sqrt (k); for (z = 2; z <= y; z++) { if ((k % z) == 0) return 0; } return 1; } int main (void) { int pp; long k; clock_t tt; k = 3; for (;;) { /* start time */ tt = clock (); /* test if 2^k - 1 is prime */ if (is_mersenne (k, &pp) != MP_OKAY) { printf ("Whoa error\n"); return -1; } if (pp == 1) { /* count time */ tt = clock () - tt; /* display if prime */ printf ("2^%-5ld - 1 is prime, test took %ld ticks\n", k, tt); } /* goto next odd exponent */ k += 2; /* but make sure its prime */ while (isprime (k) == 0) { k += 2; } } return 0; } /* $Source: /cvs/libtom/libtommath/etc/mersenne.c,v $ */ /* $Revision: 1.3 $ */ /* $Date: 2006/03/31 14:18:47 $ */