view libtommath/etc/tune.c @ 994:5c5ade336926

Prefer stronger algorithms in algorithm negotiation. Prefer diffie-hellman-group14-sha1 (2048 bit) over diffie-hellman-group1-sha1 (1024 bit). Due to meet-in-the-middle attacks the effective key length of three key 3DES is 112 bits. AES is stronger and faster then 3DES. Prefer to delay the start of compression until after authentication has completed. This avoids exposing compression code to attacks from unauthenticated users. (github pull request #9)
author Fedor Brunner <fedor.brunner@azet.sk>
date Fri, 23 Jan 2015 23:00:25 +0800
parents 5ff8218bcee9
children 60fc6476e044
line wrap: on
line source

/* Tune the Karatsuba parameters
 *
 * Tom St Denis, [email protected]
 */
#include <tommath.h>
#include <time.h>

/* how many times todo each size mult.  Depends on your computer.  For slow computers
 * this can be low like 5 or 10.  For fast [re: Athlon] should be 25 - 50 or so 
 */
#define TIMES (1UL<<14UL)

/* RDTSC from Scott Duplichan */
static ulong64 TIMFUNC (void)
   {
   #if defined __GNUC__
      #if defined(__i386__) || defined(__x86_64__)
         unsigned long long a;
         __asm__ __volatile__ ("rdtsc\nmovl %%eax,%0\nmovl %%edx,4+%0\n"::"m"(a):"%eax","%edx");
         return a;
      #else /* gcc-IA64 version */
         unsigned long result;
         __asm__ __volatile__("mov %0=ar.itc" : "=r"(result) :: "memory");
         while (__builtin_expect ((int) result == -1, 0))
         __asm__ __volatile__("mov %0=ar.itc" : "=r"(result) :: "memory");
         return result;
      #endif

   // Microsoft and Intel Windows compilers
   #elif defined _M_IX86
     __asm rdtsc
   #elif defined _M_AMD64
     return __rdtsc ();
   #elif defined _M_IA64
     #if defined __INTEL_COMPILER
       #include <ia64intrin.h>
     #endif
      return __getReg (3116);
   #else
     #error need rdtsc function for this build
   #endif
   }


#ifndef X86_TIMER

/* generic ISO C timer */
ulong64 LBL_T;
void t_start(void) { LBL_T = TIMFUNC(); }
ulong64 t_read(void) { return TIMFUNC() - LBL_T; }

#else
extern void t_start(void);
extern ulong64 t_read(void);
#endif

ulong64 time_mult(int size, int s)
{
  unsigned long     x;
  mp_int  a, b, c;
  ulong64 t1;

  mp_init (&a);
  mp_init (&b);
  mp_init (&c);

  mp_rand (&a, size);
  mp_rand (&b, size);

  if (s == 1) { 
      KARATSUBA_MUL_CUTOFF = size;
  } else {
      KARATSUBA_MUL_CUTOFF = 100000;
  }

  t_start();
  for (x = 0; x < TIMES; x++) {
      mp_mul(&a,&b,&c);
  }
  t1 = t_read();
  mp_clear (&a);
  mp_clear (&b);
  mp_clear (&c);
  return t1;
}

ulong64 time_sqr(int size, int s)
{
  unsigned long     x;
  mp_int  a, b;
  ulong64 t1;

  mp_init (&a);
  mp_init (&b);

  mp_rand (&a, size);

  if (s == 1) { 
      KARATSUBA_SQR_CUTOFF = size;
  } else {
      KARATSUBA_SQR_CUTOFF = 100000;
  }

  t_start();
  for (x = 0; x < TIMES; x++) {
      mp_sqr(&a,&b);
  }
  t1 = t_read();
  mp_clear (&a);
  mp_clear (&b);
  return t1;
}

int
main (void)
{
  ulong64 t1, t2;
  int x, y;

  for (x = 8; ; x += 2) { 
     t1 = time_mult(x, 0);
     t2 = time_mult(x, 1);
     printf("%d: %9llu %9llu, %9llu\n", x, t1, t2, t2 - t1);
     if (t2 < t1) break;
  }
  y = x;

  for (x = 8; ; x += 2) { 
     t1 = time_sqr(x, 0);
     t2 = time_sqr(x, 1);
     printf("%d: %9llu %9llu, %9llu\n", x, t1, t2, t2 - t1);
     if (t2 < t1) break;
  }
  printf("KARATSUBA_MUL_CUTOFF = %d\n", y);
  printf("KARATSUBA_SQR_CUTOFF = %d\n", x);

  return 0;
}

/* $Source: /cvs/libtom/libtommath/etc/tune.c,v $ */
/* $Revision: 1.3 $ */
/* $Date: 2006/03/31 14:18:47 $ */