Mercurial > dropbear
view libtomcrypt/src/ciphers/noekeon.c @ 1671:5c8913b7464c
Mention Ed25519 in dropbearkey man (#94)
author | Vladislav Grishenko <themiron@users.noreply.github.com> |
---|---|
date | Mon, 25 May 2020 18:28:27 +0500 |
parents | 6dba84798cd5 |
children |
line wrap: on
line source
/* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. */ /** @file noekeon.c Implementation of the Noekeon block cipher by Tom St Denis */ #include "tomcrypt.h" #ifdef LTC_NOEKEON const struct ltc_cipher_descriptor noekeon_desc = { "noekeon", 16, 16, 16, 16, 16, &noekeon_setup, &noekeon_ecb_encrypt, &noekeon_ecb_decrypt, &noekeon_test, &noekeon_done, &noekeon_keysize, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL }; static const ulong32 RC[] = { 0x00000080UL, 0x0000001bUL, 0x00000036UL, 0x0000006cUL, 0x000000d8UL, 0x000000abUL, 0x0000004dUL, 0x0000009aUL, 0x0000002fUL, 0x0000005eUL, 0x000000bcUL, 0x00000063UL, 0x000000c6UL, 0x00000097UL, 0x00000035UL, 0x0000006aUL, 0x000000d4UL }; #define kTHETA(a, b, c, d) \ temp = a^c; temp = temp ^ ROLc(temp, 8) ^ RORc(temp, 8); \ b ^= temp; d ^= temp; \ temp = b^d; temp = temp ^ ROLc(temp, 8) ^ RORc(temp, 8); \ a ^= temp; c ^= temp; #define THETA(k, a, b, c, d) \ temp = a^c; temp = temp ^ ROLc(temp, 8) ^ RORc(temp, 8); \ b ^= temp ^ k[1]; d ^= temp ^ k[3]; \ temp = b^d; temp = temp ^ ROLc(temp, 8) ^ RORc(temp, 8); \ a ^= temp ^ k[0]; c ^= temp ^ k[2]; #define GAMMA(a, b, c, d) \ b ^= ~(d|c); \ a ^= c&b; \ temp = d; d = a; a = temp;\ c ^= a ^ b ^ d; \ b ^= ~(d|c); \ a ^= c&b; #define PI1(a, b, c, d) \ b = ROLc(b, 1); c = ROLc(c, 5); d = ROLc(d, 2); #define PI2(a, b, c, d) \ b = RORc(b, 1); c = RORc(c, 5); d = RORc(d, 2); /** Initialize the Noekeon block cipher @param key The symmetric key you wish to pass @param keylen The key length in bytes @param num_rounds The number of rounds desired (0 for default) @param skey The key in as scheduled by this function. @return CRYPT_OK if successful */ int noekeon_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey) { ulong32 temp; LTC_ARGCHK(key != NULL); LTC_ARGCHK(skey != NULL); if (keylen != 16) { return CRYPT_INVALID_KEYSIZE; } if (num_rounds != 16 && num_rounds != 0) { return CRYPT_INVALID_ROUNDS; } LOAD32H(skey->noekeon.K[0],&key[0]); LOAD32H(skey->noekeon.K[1],&key[4]); LOAD32H(skey->noekeon.K[2],&key[8]); LOAD32H(skey->noekeon.K[3],&key[12]); LOAD32H(skey->noekeon.dK[0],&key[0]); LOAD32H(skey->noekeon.dK[1],&key[4]); LOAD32H(skey->noekeon.dK[2],&key[8]); LOAD32H(skey->noekeon.dK[3],&key[12]); kTHETA(skey->noekeon.dK[0], skey->noekeon.dK[1], skey->noekeon.dK[2], skey->noekeon.dK[3]); return CRYPT_OK; } /** Encrypts a block of text with Noekeon @param pt The input plaintext (16 bytes) @param ct The output ciphertext (16 bytes) @param skey The key as scheduled @return CRYPT_OK if successful */ #ifdef LTC_CLEAN_STACK static int _noekeon_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey) #else int noekeon_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey) #endif { ulong32 a,b,c,d,temp; int r; LTC_ARGCHK(skey != NULL); LTC_ARGCHK(pt != NULL); LTC_ARGCHK(ct != NULL); LOAD32H(a,&pt[0]); LOAD32H(b,&pt[4]); LOAD32H(c,&pt[8]); LOAD32H(d,&pt[12]); #define ROUND(i) \ a ^= RC[i]; \ THETA(skey->noekeon.K, a,b,c,d); \ PI1(a,b,c,d); \ GAMMA(a,b,c,d); \ PI2(a,b,c,d); for (r = 0; r < 16; ++r) { ROUND(r); } #undef ROUND a ^= RC[16]; THETA(skey->noekeon.K, a, b, c, d); STORE32H(a,&ct[0]); STORE32H(b,&ct[4]); STORE32H(c,&ct[8]); STORE32H(d,&ct[12]); return CRYPT_OK; } #ifdef LTC_CLEAN_STACK int noekeon_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey) { int err = _noekeon_ecb_encrypt(pt, ct, skey); burn_stack(sizeof(ulong32) * 5 + sizeof(int)); return err; } #endif /** Decrypts a block of text with Noekeon @param ct The input ciphertext (16 bytes) @param pt The output plaintext (16 bytes) @param skey The key as scheduled @return CRYPT_OK if successful */ #ifdef LTC_CLEAN_STACK static int _noekeon_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey) #else int noekeon_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey) #endif { ulong32 a,b,c,d, temp; int r; LTC_ARGCHK(skey != NULL); LTC_ARGCHK(pt != NULL); LTC_ARGCHK(ct != NULL); LOAD32H(a,&ct[0]); LOAD32H(b,&ct[4]); LOAD32H(c,&ct[8]); LOAD32H(d,&ct[12]); #define ROUND(i) \ THETA(skey->noekeon.dK, a,b,c,d); \ a ^= RC[i]; \ PI1(a,b,c,d); \ GAMMA(a,b,c,d); \ PI2(a,b,c,d); for (r = 16; r > 0; --r) { ROUND(r); } #undef ROUND THETA(skey->noekeon.dK, a,b,c,d); a ^= RC[0]; STORE32H(a,&pt[0]); STORE32H(b, &pt[4]); STORE32H(c,&pt[8]); STORE32H(d, &pt[12]); return CRYPT_OK; } #ifdef LTC_CLEAN_STACK int noekeon_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey) { int err = _noekeon_ecb_decrypt(ct, pt, skey); burn_stack(sizeof(ulong32) * 5 + sizeof(int)); return err; } #endif /** Performs a self-test of the Noekeon block cipher @return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled */ int noekeon_test(void) { #ifndef LTC_TEST return CRYPT_NOP; #else static const struct { int keylen; unsigned char key[16], pt[16], ct[16]; } tests[] = { { 16, { 0xAA, 0x3C, 0x8C, 0x86, 0xD9, 0x8B, 0xF8, 0xBE, 0x21, 0xE0, 0x36, 0x09, 0x78, 0xFB, 0xE4, 0x90 }, { 0xE4, 0x96, 0x6C, 0xD3, 0x13, 0xA0, 0x6C, 0xAF, 0xD0, 0x23, 0xC9, 0xFD, 0x45, 0x32, 0x23, 0x16 }, { 0xA6, 0xEC, 0xB8, 0xA8, 0x61, 0xFD, 0x62, 0xD9, 0x13, 0x02, 0xFE, 0x9E, 0x47, 0x01, 0x3F, 0xC3 } }, { 16, { 0xED, 0x43, 0xD1, 0x87, 0x21, 0x7E, 0xE0, 0x97, 0x3D, 0x76, 0xC3, 0x37, 0x2E, 0x7D, 0xAE, 0xD3 }, { 0xE3, 0x38, 0x32, 0xCC, 0xF2, 0x2F, 0x2F, 0x0A, 0x4A, 0x8B, 0x8F, 0x18, 0x12, 0x20, 0x17, 0xD3 }, { 0x94, 0xA5, 0xDF, 0xF5, 0xAE, 0x1C, 0xBB, 0x22, 0xAD, 0xEB, 0xA7, 0x0D, 0xB7, 0x82, 0x90, 0xA0 } }, { 16, { 0x6F, 0xDC, 0x23, 0x38, 0xF2, 0x10, 0xFB, 0xD3, 0xC1, 0x8C, 0x02, 0xF6, 0xB4, 0x6A, 0xD5, 0xA8 }, { 0xDB, 0x29, 0xED, 0xB5, 0x5F, 0xB3, 0x60, 0x3A, 0x92, 0xA8, 0xEB, 0x9C, 0x6D, 0x9D, 0x3E, 0x8F }, { 0x78, 0xF3, 0x6F, 0xF8, 0x9E, 0xBB, 0x8C, 0x6A, 0xE8, 0x10, 0xF7, 0x00, 0x22, 0x15, 0x30, 0x3D } }, { 16, { 0x2C, 0x0C, 0x02, 0xEF, 0x6B, 0xC4, 0xF2, 0x0B, 0x2E, 0xB9, 0xE0, 0xBF, 0xD9, 0x36, 0xC2, 0x4E }, { 0x84, 0xE2, 0xFE, 0x64, 0xB1, 0xB9, 0xFE, 0x76, 0xA8, 0x3F, 0x45, 0xC7, 0x40, 0x7A, 0xAF, 0xEE }, { 0x2A, 0x08, 0xD6, 0xA2, 0x1C, 0x63, 0x08, 0xB0, 0xF8, 0xBC, 0xB3, 0xA1, 0x66, 0xF7, 0xAE, 0xCF } }, { 16, { 0x6F, 0x30, 0xF8, 0x9F, 0xDA, 0x6E, 0xA0, 0x91, 0x04, 0x0F, 0x6C, 0x8B, 0x7D, 0xF7, 0x2A, 0x4B }, { 0x65, 0xB6, 0xA6, 0xD0, 0x42, 0x14, 0x08, 0x60, 0x34, 0x8D, 0x37, 0x2F, 0x01, 0xF0, 0x46, 0xBE }, { 0x66, 0xAC, 0x0B, 0x62, 0x1D, 0x68, 0x11, 0xF5, 0x27, 0xB1, 0x13, 0x5D, 0xF3, 0x2A, 0xE9, 0x18 } }, { 16, { 0xCA, 0xA4, 0x16, 0xB7, 0x1C, 0x92, 0x2E, 0xAD, 0xEB, 0xA7, 0xDB, 0x69, 0x92, 0xCB, 0x35, 0xEF }, { 0x81, 0x6F, 0x8E, 0x4D, 0x96, 0xC6, 0xB3, 0x67, 0x83, 0xF5, 0x63, 0xC7, 0x20, 0x6D, 0x40, 0x23 }, { 0x44, 0xF7, 0x63, 0x62, 0xF0, 0x43, 0xBB, 0x67, 0x4A, 0x75, 0x12, 0x42, 0x46, 0x29, 0x28, 0x19 } }, { 16, { 0x6B, 0xCF, 0x22, 0x2F, 0xE0, 0x1B, 0xB0, 0xAA, 0xD8, 0x3C, 0x91, 0x99, 0x18, 0xB2, 0x28, 0xE8 }, { 0x7C, 0x37, 0xC7, 0xD0, 0xAC, 0x92, 0x29, 0xF1, 0x60, 0x82, 0x93, 0x89, 0xAA, 0x61, 0xAA, 0xA9 }, { 0xE5, 0x89, 0x1B, 0xB3, 0xFE, 0x8B, 0x0C, 0xA1, 0xA6, 0xC7, 0xBE, 0x12, 0x73, 0x0F, 0xC1, 0x19 } }, { 16, { 0xE6, 0xD0, 0xF1, 0x03, 0x2E, 0xDE, 0x70, 0x8D, 0xD8, 0x9E, 0x36, 0x5C, 0x05, 0x52, 0xE7, 0x0D }, { 0xE2, 0x42, 0xE7, 0x92, 0x0E, 0xF7, 0x82, 0xA2, 0xB8, 0x21, 0x8D, 0x26, 0xBA, 0x2D, 0xE6, 0x32 }, { 0x1E, 0xDD, 0x75, 0x22, 0xB9, 0x36, 0x8A, 0x0F, 0x32, 0xFD, 0xD4, 0x48, 0x65, 0x12, 0x5A, 0x2F } } }; symmetric_key key; unsigned char tmp[2][16]; int err, i, y; for (i = 0; i < (int)(sizeof(tests)/sizeof(tests[0])); i++) { zeromem(&key, sizeof(key)); if ((err = noekeon_setup(tests[i].key, tests[i].keylen, 0, &key)) != CRYPT_OK) { return err; } noekeon_ecb_encrypt(tests[i].pt, tmp[0], &key); noekeon_ecb_decrypt(tmp[0], tmp[1], &key); if (compare_testvector(tmp[0], 16, tests[i].ct, 16, "Noekeon Encrypt", i) || compare_testvector(tmp[1], 16, tests[i].pt, 16, "Noekeon Decrypt", i)) { return CRYPT_FAIL_TESTVECTOR; } /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */ for (y = 0; y < 16; y++) tmp[0][y] = 0; for (y = 0; y < 1000; y++) noekeon_ecb_encrypt(tmp[0], tmp[0], &key); for (y = 0; y < 1000; y++) noekeon_ecb_decrypt(tmp[0], tmp[0], &key); for (y = 0; y < 16; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR; } return CRYPT_OK; #endif } /** Terminate the context @param skey The scheduled key */ void noekeon_done(symmetric_key *skey) { LTC_UNUSED_PARAM(skey); } /** Gets suitable key size @param keysize [in/out] The length of the recommended key (in bytes). This function will store the suitable size back in this variable. @return CRYPT_OK if the input key size is acceptable. */ int noekeon_keysize(int *keysize) { LTC_ARGCHK(keysize != NULL); if (*keysize < 16) { return CRYPT_INVALID_KEYSIZE; } else { *keysize = 16; return CRYPT_OK; } } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */