Mercurial > dropbear
view libtomcrypt/src/ciphers/multi2.c @ 1857:6022df862942
Use DSCP for IP QoS traffic classes
The previous TOS values are deprecated and not used by modern traffic
classifiers. This sets AF21 for "interactive" traffic (with a tty).
Non-tty traffic sets AF11 - that indicates high throughput but is not
lowest priority (which would be CS1 or LE).
This differs from the CS1 used by OpenSSH, it lets interactive git over SSH
have higher priority than background least effort traffic. Dropbear's settings
here should be suitable with the diffservs used by CAKE qdisc.
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Tue, 25 Jan 2022 17:32:20 +0800 |
parents | 6dba84798cd5 |
children |
line wrap: on
line source
/* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. */ /** @file multi2.c Multi-2 implementation (not public domain, hence the default disable) */ #include "tomcrypt.h" #ifdef LTC_MULTI2 static void pi1(ulong32 *p) { p[1] ^= p[0]; } static void pi2(ulong32 *p, ulong32 *k) { ulong32 t; t = (p[1] + k[0]) & 0xFFFFFFFFUL; t = (ROL(t, 1) + t - 1) & 0xFFFFFFFFUL; t = (ROL(t, 4) ^ t) & 0xFFFFFFFFUL; p[0] ^= t; } static void pi3(ulong32 *p, ulong32 *k) { ulong32 t; t = p[0] + k[1]; t = (ROL(t, 2) + t + 1) & 0xFFFFFFFFUL; t = (ROL(t, 8) ^ t) & 0xFFFFFFFFUL; t = (t + k[2]) & 0xFFFFFFFFUL; t = (ROL(t, 1) - t) & 0xFFFFFFFFUL; t = ROL(t, 16) ^ (p[0] | t); p[1] ^= t; } static void pi4(ulong32 *p, ulong32 *k) { ulong32 t; t = (p[1] + k[3]) & 0xFFFFFFFFUL; t = (ROL(t, 2) + t + 1) & 0xFFFFFFFFUL; p[0] ^= t; } static void setup(ulong32 *dk, ulong32 *k, ulong32 *uk) { int n, t; ulong32 p[2]; p[0] = dk[0]; p[1] = dk[1]; t = 4; n = 0; pi1(p); pi2(p, k); uk[n++] = p[0]; pi3(p, k); uk[n++] = p[1]; pi4(p, k); uk[n++] = p[0]; pi1(p); uk[n++] = p[1]; pi2(p, k+t); uk[n++] = p[0]; pi3(p, k+t); uk[n++] = p[1]; pi4(p, k+t); uk[n++] = p[0]; pi1(p); uk[n++] = p[1]; } static void encrypt(ulong32 *p, int N, ulong32 *uk) { int n, t; for (t = n = 0; ; ) { pi1(p); if (++n == N) break; pi2(p, uk+t); if (++n == N) break; pi3(p, uk+t); if (++n == N) break; pi4(p, uk+t); if (++n == N) break; t ^= 4; } } static void decrypt(ulong32 *p, int N, ulong32 *uk) { int n, t; for (t = 4*(((N-1)>>2)&1), n = N; ; ) { switch (n<=4 ? n : ((n-1)%4)+1) { case 4: pi4(p, uk+t); --n; /* FALLTHROUGH */ case 3: pi3(p, uk+t); --n; /* FALLTHROUGH */ case 2: pi2(p, uk+t); --n; /* FALLTHROUGH */ case 1: pi1(p); --n; break; case 0: return; } t ^= 4; } } const struct ltc_cipher_descriptor multi2_desc = { "multi2", 22, 40, 40, 8, 128, &multi2_setup, &multi2_ecb_encrypt, &multi2_ecb_decrypt, &multi2_test, &multi2_done, &multi2_keysize, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL }; int multi2_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey) { ulong32 sk[8], dk[2]; int x; LTC_ARGCHK(key != NULL); LTC_ARGCHK(skey != NULL); if (keylen != 40) return CRYPT_INVALID_KEYSIZE; if (num_rounds == 0) num_rounds = 128; skey->multi2.N = num_rounds; for (x = 0; x < 8; x++) { LOAD32H(sk[x], key + x*4); } LOAD32H(dk[0], key + 32); LOAD32H(dk[1], key + 36); setup(dk, sk, skey->multi2.uk); zeromem(sk, sizeof(sk)); zeromem(dk, sizeof(dk)); return CRYPT_OK; } /** Encrypts a block of text with multi2 @param pt The input plaintext (8 bytes) @param ct The output ciphertext (8 bytes) @param skey The key as scheduled @return CRYPT_OK if successful */ int multi2_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey) { ulong32 p[2]; LTC_ARGCHK(pt != NULL); LTC_ARGCHK(ct != NULL); LTC_ARGCHK(skey != NULL); LOAD32H(p[0], pt); LOAD32H(p[1], pt+4); encrypt(p, skey->multi2.N, skey->multi2.uk); STORE32H(p[0], ct); STORE32H(p[1], ct+4); return CRYPT_OK; } /** Decrypts a block of text with multi2 @param ct The input ciphertext (8 bytes) @param pt The output plaintext (8 bytes) @param skey The key as scheduled @return CRYPT_OK if successful */ int multi2_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey) { ulong32 p[2]; LTC_ARGCHK(pt != NULL); LTC_ARGCHK(ct != NULL); LTC_ARGCHK(skey != NULL); LOAD32H(p[0], ct); LOAD32H(p[1], ct+4); decrypt(p, skey->multi2.N, skey->multi2.uk); STORE32H(p[0], pt); STORE32H(p[1], pt+4); return CRYPT_OK; } /** Performs a self-test of the multi2 block cipher @return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled */ int multi2_test(void) { static const struct { unsigned char key[40]; unsigned char pt[8], ct[8]; int rounds; } tests[] = { { { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF }, { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, }, { 0xf8, 0x94, 0x40, 0x84, 0x5e, 0x11, 0xcf, 0x89 }, 128, }, { { 0x35, 0x91, 0x9d, 0x96, 0x07, 0x02, 0xe2, 0xce, 0x8d, 0x0b, 0x58, 0x3c, 0xc9, 0xc8, 0x9d, 0x59, 0xa2, 0xae, 0x96, 0x4e, 0x87, 0x82, 0x45, 0xed, 0x3f, 0x2e, 0x62, 0xd6, 0x36, 0x35, 0xd0, 0x67, 0xb1, 0x27, 0xb9, 0x06, 0xe7, 0x56, 0x22, 0x38, }, { 0x1f, 0xb4, 0x60, 0x60, 0xd0, 0xb3, 0x4f, 0xa5 }, { 0xca, 0x84, 0xa9, 0x34, 0x75, 0xc8, 0x60, 0xe5 }, 216, } }; unsigned char buf[8]; symmetric_key skey; int err, x; for (x = 1; x < (int)(sizeof(tests)/sizeof(tests[0])); x++) { if ((err = multi2_setup(tests[x].key, 40, tests[x].rounds, &skey)) != CRYPT_OK) { return err; } if ((err = multi2_ecb_encrypt(tests[x].pt, buf, &skey)) != CRYPT_OK) { return err; } if (compare_testvector(buf, 8, tests[x].ct, 8, "Multi2 Encrypt", x)) { return CRYPT_FAIL_TESTVECTOR; } if ((err = multi2_ecb_decrypt(buf, buf, &skey)) != CRYPT_OK) { return err; } if (compare_testvector(buf, 8, tests[x].pt, 8, "Multi2 Decrypt", x)) { return CRYPT_FAIL_TESTVECTOR; } } for (x = 128; x < 256; ++x) { unsigned char ct[8]; if ((err = multi2_setup(tests[0].key, 40, x, &skey)) != CRYPT_OK) { return err; } if ((err = multi2_ecb_encrypt(tests[0].pt, ct, &skey)) != CRYPT_OK) { return err; } if ((err = multi2_ecb_decrypt(ct, buf, &skey)) != CRYPT_OK) { return err; } if (compare_testvector(buf, 8, tests[0].pt, 8, "Multi2 Rounds", x)) { return CRYPT_FAIL_TESTVECTOR; } } return CRYPT_OK; } /** Terminate the context @param skey The scheduled key */ void multi2_done(symmetric_key *skey) { LTC_UNUSED_PARAM(skey); } /** Gets suitable key size @param keysize [in/out] The length of the recommended key (in bytes). This function will store the suitable size back in this variable. @return CRYPT_OK if the input key size is acceptable. */ int multi2_keysize(int *keysize) { LTC_ARGCHK(keysize != NULL); if (*keysize >= 40) { *keysize = 40; } else { return CRYPT_INVALID_KEYSIZE; } return CRYPT_OK; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */