view libtomcrypt/src/ciphers/xtea.c @ 1857:6022df862942

Use DSCP for IP QoS traffic classes The previous TOS values are deprecated and not used by modern traffic classifiers. This sets AF21 for "interactive" traffic (with a tty). Non-tty traffic sets AF11 - that indicates high throughput but is not lowest priority (which would be CS1 or LE). This differs from the CS1 used by OpenSSH, it lets interactive git over SSH have higher priority than background least effort traffic. Dropbear's settings here should be suitable with the diffservs used by CAKE qdisc.
author Matt Johnston <matt@ucc.asn.au>
date Tue, 25 Jan 2022 17:32:20 +0800
parents 6dba84798cd5
children
line wrap: on
line source

/* LibTomCrypt, modular cryptographic library -- Tom St Denis
 *
 * LibTomCrypt is a library that provides various cryptographic
 * algorithms in a highly modular and flexible manner.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 */

/**
  @file xtea.c
  Implementation of LTC_XTEA, Tom St Denis
*/
#include "tomcrypt.h"

#ifdef LTC_XTEA

const struct ltc_cipher_descriptor xtea_desc =
{
    "xtea",
    1,
    16, 16, 8, 32,
    &xtea_setup,
    &xtea_ecb_encrypt,
    &xtea_ecb_decrypt,
    &xtea_test,
    &xtea_done,
    &xtea_keysize,
    NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
};

int xtea_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
{
   ulong32 x, sum, K[4];

   LTC_ARGCHK(key != NULL);
   LTC_ARGCHK(skey != NULL);

   /* check arguments */
   if (keylen != 16) {
      return CRYPT_INVALID_KEYSIZE;
   }

   if (num_rounds != 0 && num_rounds != 32) {
      return CRYPT_INVALID_ROUNDS;
   }

   /* load key */
   LOAD32H(K[0], key+0);
   LOAD32H(K[1], key+4);
   LOAD32H(K[2], key+8);
   LOAD32H(K[3], key+12);

   for (x = sum = 0; x < 32; x++) {
       skey->xtea.A[x] = (sum + K[sum&3]) & 0xFFFFFFFFUL;
       sum = (sum + 0x9E3779B9UL) & 0xFFFFFFFFUL;
       skey->xtea.B[x] = (sum + K[(sum>>11)&3]) & 0xFFFFFFFFUL;
   }

#ifdef LTC_CLEAN_STACK
   zeromem(&K, sizeof(K));
#endif

   return CRYPT_OK;
}

/**
  Encrypts a block of text with LTC_XTEA
  @param pt The input plaintext (8 bytes)
  @param ct The output ciphertext (8 bytes)
  @param skey The key as scheduled
  @return CRYPT_OK if successful
*/
int xtea_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
{
   ulong32 y, z;
   int r;

   LTC_ARGCHK(pt   != NULL);
   LTC_ARGCHK(ct   != NULL);
   LTC_ARGCHK(skey != NULL);

   LOAD32H(y, &pt[0]);
   LOAD32H(z, &pt[4]);
   for (r = 0; r < 32; r += 4) {
       y = (y + ((((z<<4)^(z>>5)) + z) ^ skey->xtea.A[r])) & 0xFFFFFFFFUL;
       z = (z + ((((y<<4)^(y>>5)) + y) ^ skey->xtea.B[r])) & 0xFFFFFFFFUL;

       y = (y + ((((z<<4)^(z>>5)) + z) ^ skey->xtea.A[r+1])) & 0xFFFFFFFFUL;
       z = (z + ((((y<<4)^(y>>5)) + y) ^ skey->xtea.B[r+1])) & 0xFFFFFFFFUL;

       y = (y + ((((z<<4)^(z>>5)) + z) ^ skey->xtea.A[r+2])) & 0xFFFFFFFFUL;
       z = (z + ((((y<<4)^(y>>5)) + y) ^ skey->xtea.B[r+2])) & 0xFFFFFFFFUL;

       y = (y + ((((z<<4)^(z>>5)) + z) ^ skey->xtea.A[r+3])) & 0xFFFFFFFFUL;
       z = (z + ((((y<<4)^(y>>5)) + y) ^ skey->xtea.B[r+3])) & 0xFFFFFFFFUL;
   }
   STORE32H(y, &ct[0]);
   STORE32H(z, &ct[4]);
   return CRYPT_OK;
}

/**
  Decrypts a block of text with LTC_XTEA
  @param ct The input ciphertext (8 bytes)
  @param pt The output plaintext (8 bytes)
  @param skey The key as scheduled
  @return CRYPT_OK if successful
*/
int xtea_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
{
   ulong32 y, z;
   int r;

   LTC_ARGCHK(pt   != NULL);
   LTC_ARGCHK(ct   != NULL);
   LTC_ARGCHK(skey != NULL);

   LOAD32H(y, &ct[0]);
   LOAD32H(z, &ct[4]);
   for (r = 31; r >= 0; r -= 4) {
       z = (z - ((((y<<4)^(y>>5)) + y) ^ skey->xtea.B[r])) & 0xFFFFFFFFUL;
       y = (y - ((((z<<4)^(z>>5)) + z) ^ skey->xtea.A[r])) & 0xFFFFFFFFUL;

       z = (z - ((((y<<4)^(y>>5)) + y) ^ skey->xtea.B[r-1])) & 0xFFFFFFFFUL;
       y = (y - ((((z<<4)^(z>>5)) + z) ^ skey->xtea.A[r-1])) & 0xFFFFFFFFUL;

       z = (z - ((((y<<4)^(y>>5)) + y) ^ skey->xtea.B[r-2])) & 0xFFFFFFFFUL;
       y = (y - ((((z<<4)^(z>>5)) + z) ^ skey->xtea.A[r-2])) & 0xFFFFFFFFUL;

       z = (z - ((((y<<4)^(y>>5)) + y) ^ skey->xtea.B[r-3])) & 0xFFFFFFFFUL;
       y = (y - ((((z<<4)^(z>>5)) + z) ^ skey->xtea.A[r-3])) & 0xFFFFFFFFUL;
   }
   STORE32H(y, &pt[0]);
   STORE32H(z, &pt[4]);
   return CRYPT_OK;
}

/**
  Performs a self-test of the LTC_XTEA block cipher
  @return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
*/
int xtea_test(void)
{
 #ifndef LTC_TEST
    return CRYPT_NOP;
 #else
    static const struct {
        unsigned char key[16], pt[8], ct[8];
    } tests[] = {
       {
         { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
           0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
         { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
         { 0xde, 0xe9, 0xd4, 0xd8, 0xf7, 0x13, 0x1e, 0xd9 }
       }, {
         { 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x02,
           0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x04 },
         { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
         { 0xa5, 0x97, 0xab, 0x41, 0x76, 0x01, 0x4d, 0x72 }
       }, {
         { 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x04,
           0x00, 0x00, 0x00, 0x05, 0x00, 0x00, 0x00, 0x06 },
         { 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x02 },
         { 0xb1, 0xfd, 0x5d, 0xa9, 0xcc, 0x6d, 0xc9, 0xdc }
       }, {
         { 0x78, 0x69, 0x5a, 0x4b, 0x3c, 0x2d, 0x1e, 0x0f,
           0xf0, 0xe1, 0xd2, 0xc3, 0xb4, 0xa5, 0x96, 0x87 },
         { 0xf0, 0xe1, 0xd2, 0xc3, 0xb4, 0xa5, 0x96, 0x87 },
         { 0x70, 0x4b, 0x31, 0x34, 0x47, 0x44, 0xdf, 0xab }
       }, {
         { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
           0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f },
         { 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48 },
         { 0x49, 0x7d, 0xf3, 0xd0, 0x72, 0x61, 0x2c, 0xb5 }
       }, {
         { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
           0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f },
         { 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41 },
         { 0xe7, 0x8f, 0x2d, 0x13, 0x74, 0x43, 0x41, 0xd8 }
       }, {
         { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
           0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f },
         { 0x5a, 0x5b, 0x6e, 0x27, 0x89, 0x48, 0xd7, 0x7f },
         { 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41 }
       }, {
         { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
           0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
         { 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48 },
         { 0xa0, 0x39, 0x05, 0x89, 0xf8, 0xb8, 0xef, 0xa5 }
       }, {
         { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
           0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
         { 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41 },
         { 0xed, 0x23, 0x37, 0x5a, 0x82, 0x1a, 0x8c, 0x2d }
       }, {
         { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
           0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
         { 0x70, 0xe1, 0x22, 0x5d, 0x6e, 0x4e, 0x76, 0x55 },
         { 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41 }
       }
    };
   unsigned char tmp[2][8];
   symmetric_key skey;
   int i, err, y;
   for (i = 0; i < (int)(sizeof(tests)/sizeof(tests[0])); i++) {
       zeromem(&skey, sizeof(skey));
       if ((err = xtea_setup(tests[i].key, 16, 0, &skey)) != CRYPT_OK)  {
          return err;
       }
       xtea_ecb_encrypt(tests[i].pt, tmp[0], &skey);
       xtea_ecb_decrypt(tmp[0], tmp[1], &skey);

       if (compare_testvector(tmp[0], 8, tests[i].ct, 8, "XTEA Encrypt", i) != 0 ||
             compare_testvector(tmp[1], 8, tests[i].pt, 8, "XTEA Decrypt", i) != 0) {
          return CRYPT_FAIL_TESTVECTOR;
       }

      /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
      for (y = 0; y < 8; y++) tmp[0][y] = 0;
      for (y = 0; y < 1000; y++) xtea_ecb_encrypt(tmp[0], tmp[0], &skey);
      for (y = 0; y < 1000; y++) xtea_ecb_decrypt(tmp[0], tmp[0], &skey);
      for (y = 0; y < 8; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
   } /* for */

   return CRYPT_OK;
 #endif
}

/** Terminate the context
   @param skey    The scheduled key
*/
void xtea_done(symmetric_key *skey)
{
  LTC_UNUSED_PARAM(skey);
}

/**
  Gets suitable key size
  @param keysize [in/out] The length of the recommended key (in bytes).  This function will store the suitable size back in this variable.
  @return CRYPT_OK if the input key size is acceptable.
*/
int xtea_keysize(int *keysize)
{
   LTC_ARGCHK(keysize != NULL);
   if (*keysize < 16) {
      return CRYPT_INVALID_KEYSIZE;
   }
   *keysize = 16;
   return CRYPT_OK;
}


#endif




/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */