Mercurial > dropbear
view libtomcrypt/src/hashes/rmd256.c @ 1857:6022df862942
Use DSCP for IP QoS traffic classes
The previous TOS values are deprecated and not used by modern traffic
classifiers. This sets AF21 for "interactive" traffic (with a tty).
Non-tty traffic sets AF11 - that indicates high throughput but is not
lowest priority (which would be CS1 or LE).
This differs from the CS1 used by OpenSSH, it lets interactive git over SSH
have higher priority than background least effort traffic. Dropbear's settings
here should be suitable with the diffservs used by CAKE qdisc.
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Tue, 25 Jan 2022 17:32:20 +0800 |
parents | 6dba84798cd5 |
children |
line wrap: on
line source
/* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. */ #include "tomcrypt.h" /** @param rmd256.c RLTC_MD256 Hash function */ #ifdef LTC_RIPEMD256 const struct ltc_hash_descriptor rmd256_desc = { "rmd256", 13, 32, 64, /* OID */ { 1, 3, 36, 3, 2, 3 }, 6, &rmd256_init, &rmd256_process, &rmd256_done, &rmd256_test, NULL }; /* the four basic functions F(), G() and H() */ #define F(x, y, z) ((x) ^ (y) ^ (z)) #define G(x, y, z) (((x) & (y)) | (~(x) & (z))) #define H(x, y, z) (((x) | ~(y)) ^ (z)) #define I(x, y, z) (((x) & (z)) | ((y) & ~(z))) /* the eight basic operations FF() through III() */ #define FF(a, b, c, d, x, s) \ (a) += F((b), (c), (d)) + (x);\ (a) = ROLc((a), (s)); #define GG(a, b, c, d, x, s) \ (a) += G((b), (c), (d)) + (x) + 0x5a827999UL;\ (a) = ROLc((a), (s)); #define HH(a, b, c, d, x, s) \ (a) += H((b), (c), (d)) + (x) + 0x6ed9eba1UL;\ (a) = ROLc((a), (s)); #define II(a, b, c, d, x, s) \ (a) += I((b), (c), (d)) + (x) + 0x8f1bbcdcUL;\ (a) = ROLc((a), (s)); #define FFF(a, b, c, d, x, s) \ (a) += F((b), (c), (d)) + (x);\ (a) = ROLc((a), (s)); #define GGG(a, b, c, d, x, s) \ (a) += G((b), (c), (d)) + (x) + 0x6d703ef3UL;\ (a) = ROLc((a), (s)); #define HHH(a, b, c, d, x, s) \ (a) += H((b), (c), (d)) + (x) + 0x5c4dd124UL;\ (a) = ROLc((a), (s)); #define III(a, b, c, d, x, s) \ (a) += I((b), (c), (d)) + (x) + 0x50a28be6UL;\ (a) = ROLc((a), (s)); #ifdef LTC_CLEAN_STACK static int _rmd256_compress(hash_state *md, unsigned char *buf) #else static int rmd256_compress(hash_state *md, unsigned char *buf) #endif { ulong32 aa,bb,cc,dd,aaa,bbb,ccc,ddd,tmp,X[16]; int i; /* load words X */ for (i = 0; i < 16; i++){ LOAD32L(X[i], buf + (4 * i)); } /* load state */ aa = md->rmd256.state[0]; bb = md->rmd256.state[1]; cc = md->rmd256.state[2]; dd = md->rmd256.state[3]; aaa = md->rmd256.state[4]; bbb = md->rmd256.state[5]; ccc = md->rmd256.state[6]; ddd = md->rmd256.state[7]; /* round 1 */ FF(aa, bb, cc, dd, X[ 0], 11); FF(dd, aa, bb, cc, X[ 1], 14); FF(cc, dd, aa, bb, X[ 2], 15); FF(bb, cc, dd, aa, X[ 3], 12); FF(aa, bb, cc, dd, X[ 4], 5); FF(dd, aa, bb, cc, X[ 5], 8); FF(cc, dd, aa, bb, X[ 6], 7); FF(bb, cc, dd, aa, X[ 7], 9); FF(aa, bb, cc, dd, X[ 8], 11); FF(dd, aa, bb, cc, X[ 9], 13); FF(cc, dd, aa, bb, X[10], 14); FF(bb, cc, dd, aa, X[11], 15); FF(aa, bb, cc, dd, X[12], 6); FF(dd, aa, bb, cc, X[13], 7); FF(cc, dd, aa, bb, X[14], 9); FF(bb, cc, dd, aa, X[15], 8); /* parallel round 1 */ III(aaa, bbb, ccc, ddd, X[ 5], 8); III(ddd, aaa, bbb, ccc, X[14], 9); III(ccc, ddd, aaa, bbb, X[ 7], 9); III(bbb, ccc, ddd, aaa, X[ 0], 11); III(aaa, bbb, ccc, ddd, X[ 9], 13); III(ddd, aaa, bbb, ccc, X[ 2], 15); III(ccc, ddd, aaa, bbb, X[11], 15); III(bbb, ccc, ddd, aaa, X[ 4], 5); III(aaa, bbb, ccc, ddd, X[13], 7); III(ddd, aaa, bbb, ccc, X[ 6], 7); III(ccc, ddd, aaa, bbb, X[15], 8); III(bbb, ccc, ddd, aaa, X[ 8], 11); III(aaa, bbb, ccc, ddd, X[ 1], 14); III(ddd, aaa, bbb, ccc, X[10], 14); III(ccc, ddd, aaa, bbb, X[ 3], 12); III(bbb, ccc, ddd, aaa, X[12], 6); tmp = aa; aa = aaa; aaa = tmp; /* round 2 */ GG(aa, bb, cc, dd, X[ 7], 7); GG(dd, aa, bb, cc, X[ 4], 6); GG(cc, dd, aa, bb, X[13], 8); GG(bb, cc, dd, aa, X[ 1], 13); GG(aa, bb, cc, dd, X[10], 11); GG(dd, aa, bb, cc, X[ 6], 9); GG(cc, dd, aa, bb, X[15], 7); GG(bb, cc, dd, aa, X[ 3], 15); GG(aa, bb, cc, dd, X[12], 7); GG(dd, aa, bb, cc, X[ 0], 12); GG(cc, dd, aa, bb, X[ 9], 15); GG(bb, cc, dd, aa, X[ 5], 9); GG(aa, bb, cc, dd, X[ 2], 11); GG(dd, aa, bb, cc, X[14], 7); GG(cc, dd, aa, bb, X[11], 13); GG(bb, cc, dd, aa, X[ 8], 12); /* parallel round 2 */ HHH(aaa, bbb, ccc, ddd, X[ 6], 9); HHH(ddd, aaa, bbb, ccc, X[11], 13); HHH(ccc, ddd, aaa, bbb, X[ 3], 15); HHH(bbb, ccc, ddd, aaa, X[ 7], 7); HHH(aaa, bbb, ccc, ddd, X[ 0], 12); HHH(ddd, aaa, bbb, ccc, X[13], 8); HHH(ccc, ddd, aaa, bbb, X[ 5], 9); HHH(bbb, ccc, ddd, aaa, X[10], 11); HHH(aaa, bbb, ccc, ddd, X[14], 7); HHH(ddd, aaa, bbb, ccc, X[15], 7); HHH(ccc, ddd, aaa, bbb, X[ 8], 12); HHH(bbb, ccc, ddd, aaa, X[12], 7); HHH(aaa, bbb, ccc, ddd, X[ 4], 6); HHH(ddd, aaa, bbb, ccc, X[ 9], 15); HHH(ccc, ddd, aaa, bbb, X[ 1], 13); HHH(bbb, ccc, ddd, aaa, X[ 2], 11); tmp = bb; bb = bbb; bbb = tmp; /* round 3 */ HH(aa, bb, cc, dd, X[ 3], 11); HH(dd, aa, bb, cc, X[10], 13); HH(cc, dd, aa, bb, X[14], 6); HH(bb, cc, dd, aa, X[ 4], 7); HH(aa, bb, cc, dd, X[ 9], 14); HH(dd, aa, bb, cc, X[15], 9); HH(cc, dd, aa, bb, X[ 8], 13); HH(bb, cc, dd, aa, X[ 1], 15); HH(aa, bb, cc, dd, X[ 2], 14); HH(dd, aa, bb, cc, X[ 7], 8); HH(cc, dd, aa, bb, X[ 0], 13); HH(bb, cc, dd, aa, X[ 6], 6); HH(aa, bb, cc, dd, X[13], 5); HH(dd, aa, bb, cc, X[11], 12); HH(cc, dd, aa, bb, X[ 5], 7); HH(bb, cc, dd, aa, X[12], 5); /* parallel round 3 */ GGG(aaa, bbb, ccc, ddd, X[15], 9); GGG(ddd, aaa, bbb, ccc, X[ 5], 7); GGG(ccc, ddd, aaa, bbb, X[ 1], 15); GGG(bbb, ccc, ddd, aaa, X[ 3], 11); GGG(aaa, bbb, ccc, ddd, X[ 7], 8); GGG(ddd, aaa, bbb, ccc, X[14], 6); GGG(ccc, ddd, aaa, bbb, X[ 6], 6); GGG(bbb, ccc, ddd, aaa, X[ 9], 14); GGG(aaa, bbb, ccc, ddd, X[11], 12); GGG(ddd, aaa, bbb, ccc, X[ 8], 13); GGG(ccc, ddd, aaa, bbb, X[12], 5); GGG(bbb, ccc, ddd, aaa, X[ 2], 14); GGG(aaa, bbb, ccc, ddd, X[10], 13); GGG(ddd, aaa, bbb, ccc, X[ 0], 13); GGG(ccc, ddd, aaa, bbb, X[ 4], 7); GGG(bbb, ccc, ddd, aaa, X[13], 5); tmp = cc; cc = ccc; ccc = tmp; /* round 4 */ II(aa, bb, cc, dd, X[ 1], 11); II(dd, aa, bb, cc, X[ 9], 12); II(cc, dd, aa, bb, X[11], 14); II(bb, cc, dd, aa, X[10], 15); II(aa, bb, cc, dd, X[ 0], 14); II(dd, aa, bb, cc, X[ 8], 15); II(cc, dd, aa, bb, X[12], 9); II(bb, cc, dd, aa, X[ 4], 8); II(aa, bb, cc, dd, X[13], 9); II(dd, aa, bb, cc, X[ 3], 14); II(cc, dd, aa, bb, X[ 7], 5); II(bb, cc, dd, aa, X[15], 6); II(aa, bb, cc, dd, X[14], 8); II(dd, aa, bb, cc, X[ 5], 6); II(cc, dd, aa, bb, X[ 6], 5); II(bb, cc, dd, aa, X[ 2], 12); /* parallel round 4 */ FFF(aaa, bbb, ccc, ddd, X[ 8], 15); FFF(ddd, aaa, bbb, ccc, X[ 6], 5); FFF(ccc, ddd, aaa, bbb, X[ 4], 8); FFF(bbb, ccc, ddd, aaa, X[ 1], 11); FFF(aaa, bbb, ccc, ddd, X[ 3], 14); FFF(ddd, aaa, bbb, ccc, X[11], 14); FFF(ccc, ddd, aaa, bbb, X[15], 6); FFF(bbb, ccc, ddd, aaa, X[ 0], 14); FFF(aaa, bbb, ccc, ddd, X[ 5], 6); FFF(ddd, aaa, bbb, ccc, X[12], 9); FFF(ccc, ddd, aaa, bbb, X[ 2], 12); FFF(bbb, ccc, ddd, aaa, X[13], 9); FFF(aaa, bbb, ccc, ddd, X[ 9], 12); FFF(ddd, aaa, bbb, ccc, X[ 7], 5); FFF(ccc, ddd, aaa, bbb, X[10], 15); FFF(bbb, ccc, ddd, aaa, X[14], 8); tmp = dd; dd = ddd; ddd = tmp; /* combine results */ md->rmd256.state[0] += aa; md->rmd256.state[1] += bb; md->rmd256.state[2] += cc; md->rmd256.state[3] += dd; md->rmd256.state[4] += aaa; md->rmd256.state[5] += bbb; md->rmd256.state[6] += ccc; md->rmd256.state[7] += ddd; return CRYPT_OK; } #ifdef LTC_CLEAN_STACK static int rmd256_compress(hash_state *md, unsigned char *buf) { int err; err = _rmd256_compress(md, buf); burn_stack(sizeof(ulong32) * 25 + sizeof(int)); return err; } #endif /** Initialize the hash state @param md The hash state you wish to initialize @return CRYPT_OK if successful */ int rmd256_init(hash_state * md) { LTC_ARGCHK(md != NULL); md->rmd256.state[0] = 0x67452301UL; md->rmd256.state[1] = 0xefcdab89UL; md->rmd256.state[2] = 0x98badcfeUL; md->rmd256.state[3] = 0x10325476UL; md->rmd256.state[4] = 0x76543210UL; md->rmd256.state[5] = 0xfedcba98UL; md->rmd256.state[6] = 0x89abcdefUL; md->rmd256.state[7] = 0x01234567UL; md->rmd256.curlen = 0; md->rmd256.length = 0; return CRYPT_OK; } /** Process a block of memory though the hash @param md The hash state @param in The data to hash @param inlen The length of the data (octets) @return CRYPT_OK if successful */ HASH_PROCESS(rmd256_process, rmd256_compress, rmd256, 64) /** Terminate the hash to get the digest @param md The hash state @param out [out] The destination of the hash (16 bytes) @return CRYPT_OK if successful */ int rmd256_done(hash_state * md, unsigned char *out) { int i; LTC_ARGCHK(md != NULL); LTC_ARGCHK(out != NULL); if (md->rmd256.curlen >= sizeof(md->rmd256.buf)) { return CRYPT_INVALID_ARG; } /* increase the length of the message */ md->rmd256.length += md->rmd256.curlen * 8; /* append the '1' bit */ md->rmd256.buf[md->rmd256.curlen++] = (unsigned char)0x80; /* if the length is currently above 56 bytes we append zeros * then compress. Then we can fall back to padding zeros and length * encoding like normal. */ if (md->rmd256.curlen > 56) { while (md->rmd256.curlen < 64) { md->rmd256.buf[md->rmd256.curlen++] = (unsigned char)0; } rmd256_compress(md, md->rmd256.buf); md->rmd256.curlen = 0; } /* pad upto 56 bytes of zeroes */ while (md->rmd256.curlen < 56) { md->rmd256.buf[md->rmd256.curlen++] = (unsigned char)0; } /* store length */ STORE64L(md->rmd256.length, md->rmd256.buf+56); rmd256_compress(md, md->rmd256.buf); /* copy output */ for (i = 0; i < 8; i++) { STORE32L(md->rmd256.state[i], out+(4*i)); } #ifdef LTC_CLEAN_STACK zeromem(md, sizeof(hash_state)); #endif return CRYPT_OK; } /** Self-test the hash @return CRYPT_OK if successful, CRYPT_NOP if self-tests have been disabled */ int rmd256_test(void) { #ifndef LTC_TEST return CRYPT_NOP; #else static const struct { const char *msg; unsigned char hash[32]; } tests[] = { { "", { 0x02, 0xba, 0x4c, 0x4e, 0x5f, 0x8e, 0xcd, 0x18, 0x77, 0xfc, 0x52, 0xd6, 0x4d, 0x30, 0xe3, 0x7a, 0x2d, 0x97, 0x74, 0xfb, 0x1e, 0x5d, 0x02, 0x63, 0x80, 0xae, 0x01, 0x68, 0xe3, 0xc5, 0x52, 0x2d } }, { "a", { 0xf9, 0x33, 0x3e, 0x45, 0xd8, 0x57, 0xf5, 0xd9, 0x0a, 0x91, 0xba, 0xb7, 0x0a, 0x1e, 0xba, 0x0c, 0xfb, 0x1b, 0xe4, 0xb0, 0x78, 0x3c, 0x9a, 0xcf, 0xcd, 0x88, 0x3a, 0x91, 0x34, 0x69, 0x29, 0x25 } }, { "abc", { 0xaf, 0xbd, 0x6e, 0x22, 0x8b, 0x9d, 0x8c, 0xbb, 0xce, 0xf5, 0xca, 0x2d, 0x03, 0xe6, 0xdb, 0xa1, 0x0a, 0xc0, 0xbc, 0x7d, 0xcb, 0xe4, 0x68, 0x0e, 0x1e, 0x42, 0xd2, 0xe9, 0x75, 0x45, 0x9b, 0x65 } }, { "message digest", { 0x87, 0xe9, 0x71, 0x75, 0x9a, 0x1c, 0xe4, 0x7a, 0x51, 0x4d, 0x5c, 0x91, 0x4c, 0x39, 0x2c, 0x90, 0x18, 0xc7, 0xc4, 0x6b, 0xc1, 0x44, 0x65, 0x55, 0x4a, 0xfc, 0xdf, 0x54, 0xa5, 0x07, 0x0c, 0x0e } }, { "abcdefghijklmnopqrstuvwxyz", { 0x64, 0x9d, 0x30, 0x34, 0x75, 0x1e, 0xa2, 0x16, 0x77, 0x6b, 0xf9, 0xa1, 0x8a, 0xcc, 0x81, 0xbc, 0x78, 0x96, 0x11, 0x8a, 0x51, 0x97, 0x96, 0x87, 0x82, 0xdd, 0x1f, 0xd9, 0x7d, 0x8d, 0x51, 0x33 } }, { "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789", { 0x57, 0x40, 0xa4, 0x08, 0xac, 0x16, 0xb7, 0x20, 0xb8, 0x44, 0x24, 0xae, 0x93, 0x1c, 0xbb, 0x1f, 0xe3, 0x63, 0xd1, 0xd0, 0xbf, 0x40, 0x17, 0xf1, 0xa8, 0x9f, 0x7e, 0xa6, 0xde, 0x77, 0xa0, 0xb8 } } }; int i; unsigned char tmp[32]; hash_state md; for (i = 0; i < (int)(sizeof(tests)/sizeof(tests[0])); i++) { rmd256_init(&md); rmd256_process(&md, (unsigned char *)tests[i].msg, strlen(tests[i].msg)); rmd256_done(&md, tmp); if (compare_testvector(tmp, sizeof(tmp), tests[i].hash, sizeof(tests[i].hash), "RIPEMD256", i)) { return CRYPT_FAIL_TESTVECTOR; } } return CRYPT_OK; #endif } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */