Mercurial > dropbear
view libtommath/bn_mp_prime_next_prime.c @ 1436:60fc6476e044
Update to libtommath v1.0
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Sat, 24 Jun 2017 22:37:14 +0800 |
parents | a55b97f5a485 |
children | 8bba51a55704 |
line wrap: on
line source
#include <tommath_private.h> #ifdef BN_MP_PRIME_NEXT_PRIME_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, [email protected], http://libtom.org */ /* finds the next prime after the number "a" using "t" trials * of Miller-Rabin. * * bbs_style = 1 means the prime must be congruent to 3 mod 4 */ int mp_prime_next_prime(mp_int *a, int t, int bbs_style) { int err, res = MP_NO, x, y; mp_digit res_tab[PRIME_SIZE], step, kstep; mp_int b; /* ensure t is valid */ if ((t <= 0) || (t > PRIME_SIZE)) { return MP_VAL; } /* force positive */ a->sign = MP_ZPOS; /* simple algo if a is less than the largest prime in the table */ if (mp_cmp_d(a, ltm_prime_tab[PRIME_SIZE-1]) == MP_LT) { /* find which prime it is bigger than */ for (x = PRIME_SIZE - 2; x >= 0; x--) { if (mp_cmp_d(a, ltm_prime_tab[x]) != MP_LT) { if (bbs_style == 1) { /* ok we found a prime smaller or * equal [so the next is larger] * * however, the prime must be * congruent to 3 mod 4 */ if ((ltm_prime_tab[x + 1] & 3) != 3) { /* scan upwards for a prime congruent to 3 mod 4 */ for (y = x + 1; y < PRIME_SIZE; y++) { if ((ltm_prime_tab[y] & 3) == 3) { mp_set(a, ltm_prime_tab[y]); return MP_OKAY; } } } } else { mp_set(a, ltm_prime_tab[x + 1]); return MP_OKAY; } } } /* at this point a maybe 1 */ if (mp_cmp_d(a, 1) == MP_EQ) { mp_set(a, 2); return MP_OKAY; } /* fall through to the sieve */ } /* generate a prime congruent to 3 mod 4 or 1/3 mod 4? */ if (bbs_style == 1) { kstep = 4; } else { kstep = 2; } /* at this point we will use a combination of a sieve and Miller-Rabin */ if (bbs_style == 1) { /* if a mod 4 != 3 subtract the correct value to make it so */ if ((a->dp[0] & 3) != 3) { if ((err = mp_sub_d(a, (a->dp[0] & 3) + 1, a)) != MP_OKAY) { return err; }; } } else { if (mp_iseven(a) == MP_YES) { /* force odd */ if ((err = mp_sub_d(a, 1, a)) != MP_OKAY) { return err; } } } /* generate the restable */ for (x = 1; x < PRIME_SIZE; x++) { if ((err = mp_mod_d(a, ltm_prime_tab[x], res_tab + x)) != MP_OKAY) { return err; } } /* init temp used for Miller-Rabin Testing */ if ((err = mp_init(&b)) != MP_OKAY) { return err; } for (;;) { /* skip to the next non-trivially divisible candidate */ step = 0; do { /* y == 1 if any residue was zero [e.g. cannot be prime] */ y = 0; /* increase step to next candidate */ step += kstep; /* compute the new residue without using division */ for (x = 1; x < PRIME_SIZE; x++) { /* add the step to each residue */ res_tab[x] += kstep; /* subtract the modulus [instead of using division] */ if (res_tab[x] >= ltm_prime_tab[x]) { res_tab[x] -= ltm_prime_tab[x]; } /* set flag if zero */ if (res_tab[x] == 0) { y = 1; } } } while ((y == 1) && (step < ((((mp_digit)1) << DIGIT_BIT) - kstep))); /* add the step */ if ((err = mp_add_d(a, step, a)) != MP_OKAY) { goto LBL_ERR; } /* if didn't pass sieve and step == MAX then skip test */ if ((y == 1) && (step >= ((((mp_digit)1) << DIGIT_BIT) - kstep))) { continue; } /* is this prime? */ for (x = 0; x < t; x++) { mp_set(&b, ltm_prime_tab[x]); if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) { goto LBL_ERR; } if (res == MP_NO) { break; } } if (res == MP_YES) { break; } } err = MP_OKAY; LBL_ERR: mp_clear(&b); return err; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */