Mercurial > dropbear
view libtomcrypt/src/ciphers/kasumi.c @ 1596:60fceff95858
workaround memory sanitizer FD_ZERO false positives
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Tue, 06 Mar 2018 21:51:51 +0800 |
parents | 6dba84798cd5 |
children |
line wrap: on
line source
/* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. */ /** @file kasumi.c Implementation of the 3GPP Kasumi block cipher Derived from the 3GPP standard source code */ #include "tomcrypt.h" #ifdef LTC_KASUMI typedef unsigned u16; #define ROL16(x, y) ((((x)<<(y)) | ((x)>>(16-(y)))) & 0xFFFF) const struct ltc_cipher_descriptor kasumi_desc = { "kasumi", 21, 16, 16, 8, 8, &kasumi_setup, &kasumi_ecb_encrypt, &kasumi_ecb_decrypt, &kasumi_test, &kasumi_done, &kasumi_keysize, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL }; static u16 FI( u16 in, u16 subkey ) { u16 nine, seven; static const u16 S7[128] = { 54, 50, 62, 56, 22, 34, 94, 96, 38, 6, 63, 93, 2, 18,123, 33, 55,113, 39,114, 21, 67, 65, 12, 47, 73, 46, 27, 25,111,124, 81, 53, 9,121, 79, 52, 60, 58, 48,101,127, 40,120,104, 70, 71, 43, 20,122, 72, 61, 23,109, 13,100, 77, 1, 16, 7, 82, 10,105, 98, 117,116, 76, 11, 89,106, 0,125,118, 99, 86, 69, 30, 57,126, 87, 112, 51, 17, 5, 95, 14, 90, 84, 91, 8, 35,103, 32, 97, 28, 66, 102, 31, 26, 45, 75, 4, 85, 92, 37, 74, 80, 49, 68, 29,115, 44, 64,107,108, 24,110, 83, 36, 78, 42, 19, 15, 41, 88,119, 59, 3 }; static const u16 S9[512] = { 167,239,161,379,391,334, 9,338, 38,226, 48,358,452,385, 90,397, 183,253,147,331,415,340, 51,362,306,500,262, 82,216,159,356,177, 175,241,489, 37,206, 17, 0,333, 44,254,378, 58,143,220, 81,400, 95, 3,315,245, 54,235,218,405,472,264,172,494,371,290,399, 76, 165,197,395,121,257,480,423,212,240, 28,462,176,406,507,288,223, 501,407,249,265, 89,186,221,428,164, 74,440,196,458,421,350,163, 232,158,134,354, 13,250,491,142,191, 69,193,425,152,227,366,135, 344,300,276,242,437,320,113,278, 11,243, 87,317, 36, 93,496, 27, 487,446,482, 41, 68,156,457,131,326,403,339, 20, 39,115,442,124, 475,384,508, 53,112,170,479,151,126,169, 73,268,279,321,168,364, 363,292, 46,499,393,327,324, 24,456,267,157,460,488,426,309,229, 439,506,208,271,349,401,434,236, 16,209,359, 52, 56,120,199,277, 465,416,252,287,246, 6, 83,305,420,345,153,502, 65, 61,244,282, 173,222,418, 67,386,368,261,101,476,291,195,430, 49, 79,166,330, 280,383,373,128,382,408,155,495,367,388,274,107,459,417, 62,454, 132,225,203,316,234, 14,301, 91,503,286,424,211,347,307,140,374, 35,103,125,427, 19,214,453,146,498,314,444,230,256,329,198,285, 50,116, 78,410, 10,205,510,171,231, 45,139,467, 29, 86,505, 32, 72, 26,342,150,313,490,431,238,411,325,149,473, 40,119,174,355, 185,233,389, 71,448,273,372, 55,110,178,322, 12,469,392,369,190, 1,109,375,137,181, 88, 75,308,260,484, 98,272,370,275,412,111, 336,318, 4,504,492,259,304, 77,337,435, 21,357,303,332,483, 18, 47, 85, 25,497,474,289,100,269,296,478,270,106, 31,104,433, 84, 414,486,394, 96, 99,154,511,148,413,361,409,255,162,215,302,201, 266,351,343,144,441,365,108,298,251, 34,182,509,138,210,335,133, 311,352,328,141,396,346,123,319,450,281,429,228,443,481, 92,404, 485,422,248,297, 23,213,130,466, 22,217,283, 70,294,360,419,127, 312,377, 7,468,194, 2,117,295,463,258,224,447,247,187, 80,398, 284,353,105,390,299,471,470,184, 57,200,348, 63,204,188, 33,451, 97, 30,310,219, 94,160,129,493, 64,179,263,102,189,207,114,402, 438,477,387,122,192, 42,381, 5,145,118,180,449,293,323,136,380, 43, 66, 60,455,341,445,202,432, 8,237, 15,376,436,464, 59,461}; /* The sixteen bit input is split into two unequal halves, * * nine bits and seven bits - as is the subkey */ nine = (u16)(in>>7)&0x1FF; seven = (u16)(in&0x7F); /* Now run the various operations */ nine = (u16)(S9[nine] ^ seven); seven = (u16)(S7[seven] ^ (nine & 0x7F)); seven ^= (subkey>>9); nine ^= (subkey&0x1FF); nine = (u16)(S9[nine] ^ seven); seven = (u16)(S7[seven] ^ (nine & 0x7F)); return (u16)(seven<<9) + nine; } static ulong32 FO( ulong32 in, int round_no, symmetric_key *key) { u16 left, right; /* Split the input into two 16-bit words */ left = (u16)(in>>16); right = (u16) in&0xFFFF; /* Now apply the same basic transformation three times */ left ^= key->kasumi.KOi1[round_no]; left = FI( left, key->kasumi.KIi1[round_no] ); left ^= right; right ^= key->kasumi.KOi2[round_no]; right = FI( right, key->kasumi.KIi2[round_no] ); right ^= left; left ^= key->kasumi.KOi3[round_no]; left = FI( left, key->kasumi.KIi3[round_no] ); left ^= right; return (((ulong32)right)<<16)+left; } static ulong32 FL( ulong32 in, int round_no, symmetric_key *key ) { u16 l, r, a, b; /* split out the left and right halves */ l = (u16)(in>>16); r = (u16)(in)&0xFFFF; /* do the FL() operations */ a = (u16) (l & key->kasumi.KLi1[round_no]); r ^= ROL16(a,1); b = (u16)(r | key->kasumi.KLi2[round_no]); l ^= ROL16(b,1); /* put the two halves back together */ return (((ulong32)l)<<16) + r; } int kasumi_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey) { ulong32 left, right, temp; int n; LTC_ARGCHK(pt != NULL); LTC_ARGCHK(ct != NULL); LTC_ARGCHK(skey != NULL); LOAD32H(left, pt); LOAD32H(right, pt+4); for (n = 0; n <= 7; ) { temp = FL(left, n, skey); temp = FO(temp, n++, skey); right ^= temp; temp = FO(right, n, skey); temp = FL(temp, n++, skey); left ^= temp; } STORE32H(left, ct); STORE32H(right, ct+4); return CRYPT_OK; } int kasumi_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey) { ulong32 left, right, temp; int n; LTC_ARGCHK(pt != NULL); LTC_ARGCHK(ct != NULL); LTC_ARGCHK(skey != NULL); LOAD32H(left, ct); LOAD32H(right, ct+4); for (n = 7; n >= 0; ) { temp = FO(right, n, skey); temp = FL(temp, n--, skey); left ^= temp; temp = FL(left, n, skey); temp = FO(temp, n--, skey); right ^= temp; } STORE32H(left, pt); STORE32H(right, pt+4); return CRYPT_OK; } int kasumi_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey) { static const u16 C[8] = { 0x0123,0x4567,0x89AB,0xCDEF, 0xFEDC,0xBA98,0x7654,0x3210 }; u16 ukey[8], Kprime[8]; int n; LTC_ARGCHK(key != NULL); LTC_ARGCHK(skey != NULL); if (keylen != 16) { return CRYPT_INVALID_KEYSIZE; } if (num_rounds != 0 && num_rounds != 8) { return CRYPT_INVALID_ROUNDS; } /* Start by ensuring the subkeys are endian correct on a 16-bit basis */ for (n = 0; n < 8; n++ ) { ukey[n] = (((u16)key[2*n]) << 8) | key[2*n+1]; } /* Now build the K'[] keys */ for (n = 0; n < 8; n++) { Kprime[n] = ukey[n] ^ C[n]; } /* Finally construct the various sub keys */ for(n = 0; n < 8; n++) { skey->kasumi.KLi1[n] = ROL16(ukey[n],1); skey->kasumi.KLi2[n] = Kprime[(n+2)&0x7]; skey->kasumi.KOi1[n] = ROL16(ukey[(n+1)&0x7],5); skey->kasumi.KOi2[n] = ROL16(ukey[(n+5)&0x7],8); skey->kasumi.KOi3[n] = ROL16(ukey[(n+6)&0x7],13); skey->kasumi.KIi1[n] = Kprime[(n+4)&0x7]; skey->kasumi.KIi2[n] = Kprime[(n+3)&0x7]; skey->kasumi.KIi3[n] = Kprime[(n+7)&0x7]; } return CRYPT_OK; } void kasumi_done(symmetric_key *skey) { LTC_UNUSED_PARAM(skey); } int kasumi_keysize(int *keysize) { LTC_ARGCHK(keysize != NULL); if (*keysize >= 16) { *keysize = 16; return CRYPT_OK; } else { return CRYPT_INVALID_KEYSIZE; } } int kasumi_test(void) { #ifndef LTC_TEST return CRYPT_NOP; #else static const struct { unsigned char key[16], pt[8], ct[8]; } tests[] = { { { 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, { 0x4B, 0x58, 0xA7, 0x71, 0xAF, 0xC7, 0xE5, 0xE8 } }, { { 0x00, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, { 0x7E, 0xEF, 0x11, 0x3C, 0x95, 0xBB, 0x5A, 0x77 } }, { { 0x00, 0x00, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, { 0x5F, 0x14, 0x06, 0x86, 0xD7, 0xAD, 0x5A, 0x39 }, }, { { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01 }, { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, { 0x2E, 0x14, 0x91, 0xCF, 0x70, 0xAA, 0x46, 0x5D } }, { { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00 }, { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, { 0xB5, 0x45, 0x86, 0xF4, 0xAB, 0x9A, 0xE5, 0x46 } }, }; unsigned char buf[2][8]; symmetric_key key; int err, x; for (x = 0; x < (int)(sizeof(tests)/sizeof(tests[0])); x++) { if ((err = kasumi_setup(tests[x].key, 16, 0, &key)) != CRYPT_OK) { return err; } if ((err = kasumi_ecb_encrypt(tests[x].pt, buf[0], &key)) != CRYPT_OK) { return err; } if ((err = kasumi_ecb_decrypt(tests[x].ct, buf[1], &key)) != CRYPT_OK) { return err; } if (compare_testvector(buf[1], 8, tests[x].pt, 8, "Kasumi Decrypt", x) || compare_testvector(buf[0], 8, tests[x].ct, 8, "Kasumi Encrypt", x)) { return CRYPT_FAIL_TESTVECTOR; } } return CRYPT_OK; #endif } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */