view libtommath/bn_mp_dr_reduce.c @ 292:64abb124763d insecure-nocrypto

propagate from branch 'au.asn.ucc.matt.dropbear' (head 7ad1775ed65e75dbece27fe6b65bf1a234db386a) to branch 'au.asn.ucc.matt.dropbear.insecure-nocrypto' (head 88ed2b94d9bfec9a4f661caf592ed01da5eb3b6a)
author Matt Johnston <matt@ucc.asn.au>
date Fri, 10 Mar 2006 06:30:52 +0000
parents eed26cff980b
children 5ff8218bcee9
line wrap: on
line source

#include <tommath.h>
#ifdef BN_MP_DR_REDUCE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://math.libtomcrypt.org
 */

/* reduce "x" in place modulo "n" using the Diminished Radix algorithm.
 *
 * Based on algorithm from the paper
 *
 * "Generating Efficient Primes for Discrete Log Cryptosystems"
 *                 Chae Hoon Lim, Pil Joong Lee,
 *          POSTECH Information Research Laboratories
 *
 * The modulus must be of a special format [see manual]
 *
 * Has been modified to use algorithm 7.10 from the LTM book instead
 *
 * Input x must be in the range 0 <= x <= (n-1)**2
 */
int
mp_dr_reduce (mp_int * x, mp_int * n, mp_digit k)
{
  int      err, i, m;
  mp_word  r;
  mp_digit mu, *tmpx1, *tmpx2;

  /* m = digits in modulus */
  m = n->used;

  /* ensure that "x" has at least 2m digits */
  if (x->alloc < m + m) {
    if ((err = mp_grow (x, m + m)) != MP_OKAY) {
      return err;
    }
  }

/* top of loop, this is where the code resumes if
 * another reduction pass is required.
 */
top:
  /* aliases for digits */
  /* alias for lower half of x */
  tmpx1 = x->dp;

  /* alias for upper half of x, or x/B**m */
  tmpx2 = x->dp + m;

  /* set carry to zero */
  mu = 0;

  /* compute (x mod B**m) + k * [x/B**m] inline and inplace */
  for (i = 0; i < m; i++) {
      r         = ((mp_word)*tmpx2++) * ((mp_word)k) + *tmpx1 + mu;
      *tmpx1++  = (mp_digit)(r & MP_MASK);
      mu        = (mp_digit)(r >> ((mp_word)DIGIT_BIT));
  }

  /* set final carry */
  *tmpx1++ = mu;

  /* zero words above m */
  for (i = m + 1; i < x->used; i++) {
      *tmpx1++ = 0;
  }

  /* clamp, sub and return */
  mp_clamp (x);

  /* if x >= n then subtract and reduce again
   * Each successive "recursion" makes the input smaller and smaller.
   */
  if (mp_cmp_mag (x, n) != MP_LT) {
    s_mp_sub(x, n, x);
    goto top;
  }
  return MP_OKAY;
}
#endif