Mercurial > dropbear
view common-kex.c @ 1352:66c1cfd5e100 fuzz
rename fuzzer -> fuzz-target, add list-fuzz-targets
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Sun, 14 May 2017 00:00:21 +0800 |
parents | b28624698130 |
children | 3fdd8c5a0195 |
line wrap: on
line source
/* * Dropbear SSH * * Copyright (c) 2002-2004 Matt Johnston * Portions Copyright (c) 2004 by Mihnea Stoenescu * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "includes.h" #include "dbutil.h" #include "algo.h" #include "buffer.h" #include "session.h" #include "kex.h" #include "dh_groups.h" #include "ssh.h" #include "packet.h" #include "bignum.h" #include "dbrandom.h" #include "runopts.h" #include "ecc.h" #include "crypto_desc.h" static void kexinitialise(void); static void gen_new_keys(void); #ifndef DISABLE_ZLIB static void gen_new_zstream_recv(void); static void gen_new_zstream_trans(void); #endif static void read_kex_algos(void); /* helper function for gen_new_keys */ static void hashkeys(unsigned char *out, unsigned int outlen, const hash_state * hs, const unsigned char X); static void finish_kexhashbuf(void); /* Send our list of algorithms we can use */ void send_msg_kexinit() { CHECKCLEARTOWRITE(); buf_putbyte(ses.writepayload, SSH_MSG_KEXINIT); /* cookie */ genrandom(buf_getwriteptr(ses.writepayload, 16), 16); buf_incrwritepos(ses.writepayload, 16); /* kex algos */ buf_put_algolist(ses.writepayload, sshkex); /* server_host_key_algorithms */ buf_put_algolist(ses.writepayload, sshhostkey); /* encryption_algorithms_client_to_server */ buf_put_algolist(ses.writepayload, sshciphers); /* encryption_algorithms_server_to_client */ buf_put_algolist(ses.writepayload, sshciphers); /* mac_algorithms_client_to_server */ buf_put_algolist(ses.writepayload, sshhashes); /* mac_algorithms_server_to_client */ buf_put_algolist(ses.writepayload, sshhashes); /* compression_algorithms_client_to_server */ buf_put_algolist(ses.writepayload, ses.compress_algos); /* compression_algorithms_server_to_client */ buf_put_algolist(ses.writepayload, ses.compress_algos); /* languages_client_to_server */ buf_putstring(ses.writepayload, "", 0); /* languages_server_to_client */ buf_putstring(ses.writepayload, "", 0); /* first_kex_packet_follows */ buf_putbyte(ses.writepayload, (ses.send_kex_first_guess != NULL)); /* reserved unit32 */ buf_putint(ses.writepayload, 0); /* set up transmitted kex packet buffer for hashing. * This is freed after the end of the kex */ ses.transkexinit = buf_newcopy(ses.writepayload); encrypt_packet(); ses.dataallowed = 0; /* don't send other packets during kex */ ses.kexstate.sentkexinit = 1; ses.newkeys = (struct key_context*)m_malloc(sizeof(struct key_context)); if (ses.send_kex_first_guess) { ses.newkeys->algo_kex = sshkex[0].data; ses.newkeys->algo_hostkey = sshhostkey[0].val; ses.send_kex_first_guess(); } TRACE(("DATAALLOWED=0")) TRACE(("-> KEXINIT")) } static void switch_keys() { TRACE2(("enter switch_keys")) if (!(ses.kexstate.sentkexinit && ses.kexstate.recvkexinit)) { dropbear_exit("Unexpected newkeys message"); } if (!ses.keys) { ses.keys = m_malloc(sizeof(*ses.newkeys)); } if (ses.kexstate.recvnewkeys && ses.newkeys->recv.valid) { TRACE(("switch_keys recv")) #ifndef DISABLE_ZLIB gen_new_zstream_recv(); #endif ses.keys->recv = ses.newkeys->recv; m_burn(&ses.newkeys->recv, sizeof(ses.newkeys->recv)); ses.newkeys->recv.valid = 0; } if (ses.kexstate.sentnewkeys && ses.newkeys->trans.valid) { TRACE(("switch_keys trans")) #ifndef DISABLE_ZLIB gen_new_zstream_trans(); #endif ses.keys->trans = ses.newkeys->trans; m_burn(&ses.newkeys->trans, sizeof(ses.newkeys->trans)); ses.newkeys->trans.valid = 0; } if (ses.kexstate.sentnewkeys && ses.kexstate.recvnewkeys) { TRACE(("switch_keys done")) ses.keys->algo_kex = ses.newkeys->algo_kex; ses.keys->algo_hostkey = ses.newkeys->algo_hostkey; ses.keys->allow_compress = 0; m_free(ses.newkeys); ses.newkeys = NULL; kexinitialise(); } TRACE2(("leave switch_keys")) } /* Bring new keys into use after a key exchange, and let the client know*/ void send_msg_newkeys() { TRACE(("enter send_msg_newkeys")) /* generate the kexinit request */ CHECKCLEARTOWRITE(); buf_putbyte(ses.writepayload, SSH_MSG_NEWKEYS); encrypt_packet(); /* set up our state */ ses.kexstate.sentnewkeys = 1; ses.kexstate.donefirstkex = 1; ses.dataallowed = 1; /* we can send other packets again now */ gen_new_keys(); switch_keys(); TRACE(("leave send_msg_newkeys")) } /* Bring the new keys into use after a key exchange */ void recv_msg_newkeys() { TRACE(("enter recv_msg_newkeys")) ses.kexstate.recvnewkeys = 1; switch_keys(); TRACE(("leave recv_msg_newkeys")) } /* Set up the kex for the first time */ void kexfirstinitialise() { ses.kexstate.donefirstkex = 0; #ifdef DISABLE_ZLIB ses.compress_algos = ssh_nocompress; #else switch (opts.compress_mode) { case DROPBEAR_COMPRESS_DELAYED: ses.compress_algos = ssh_delaycompress; break; case DROPBEAR_COMPRESS_ON: ses.compress_algos = ssh_compress; break; case DROPBEAR_COMPRESS_OFF: ses.compress_algos = ssh_nocompress; break; } #endif kexinitialise(); } /* Reset the kex state, ready for a new negotiation */ static void kexinitialise() { TRACE(("kexinitialise()")) /* sent/recv'd MSG_KEXINIT */ ses.kexstate.sentkexinit = 0; ses.kexstate.recvkexinit = 0; /* sent/recv'd MSG_NEWKEYS */ ses.kexstate.recvnewkeys = 0; ses.kexstate.sentnewkeys = 0; /* first_packet_follows */ ses.kexstate.them_firstfollows = 0; ses.kexstate.datatrans = 0; ses.kexstate.datarecv = 0; ses.kexstate.our_first_follows_matches = 0; ses.kexstate.lastkextime = monotonic_now(); } /* Helper function for gen_new_keys, creates a hash. It makes a copy of the * already initialised hash_state hs, which should already have processed * the dh_K and hash, since these are common. X is the letter 'A', 'B' etc. * out must have at least min(SHA1_HASH_SIZE, outlen) bytes allocated. * * See Section 7.2 of rfc4253 (ssh transport) for details */ static void hashkeys(unsigned char *out, unsigned int outlen, const hash_state * hs, const unsigned char X) { const struct ltc_hash_descriptor *hash_desc = ses.newkeys->algo_kex->hash_desc; hash_state hs2; unsigned int offset; unsigned char tmpout[MAX_HASH_SIZE]; memcpy(&hs2, hs, sizeof(hash_state)); hash_desc->process(&hs2, &X, 1); hash_desc->process(&hs2, ses.session_id->data, ses.session_id->len); hash_desc->done(&hs2, tmpout); memcpy(out, tmpout, MIN(hash_desc->hashsize, outlen)); for (offset = hash_desc->hashsize; offset < outlen; offset += hash_desc->hashsize) { /* need to extend */ memcpy(&hs2, hs, sizeof(hash_state)); hash_desc->process(&hs2, out, offset); hash_desc->done(&hs2, tmpout); memcpy(&out[offset], tmpout, MIN(outlen - offset, hash_desc->hashsize)); } m_burn(&hs2, sizeof(hash_state)); } /* Generate the actual encryption/integrity keys, using the results of the * key exchange, as specified in section 7.2 of the transport rfc 4253. * This occurs after the DH key-exchange. * * ses.newkeys is the new set of keys which are generated, these are only * taken into use after both sides have sent a newkeys message */ static void gen_new_keys() { unsigned char C2S_IV[MAX_IV_LEN]; unsigned char C2S_key[MAX_KEY_LEN]; unsigned char S2C_IV[MAX_IV_LEN]; unsigned char S2C_key[MAX_KEY_LEN]; /* unsigned char key[MAX_KEY_LEN]; */ unsigned char *trans_IV, *trans_key, *recv_IV, *recv_key; hash_state hs; const struct ltc_hash_descriptor *hash_desc = ses.newkeys->algo_kex->hash_desc; char mactransletter, macrecvletter; /* Client or server specific */ TRACE(("enter gen_new_keys")) /* the dh_K and hash are the start of all hashes, we make use of that */ hash_desc->init(&hs); hash_process_mp(hash_desc, &hs, ses.dh_K); mp_clear(ses.dh_K); m_free(ses.dh_K); hash_desc->process(&hs, ses.hash->data, ses.hash->len); buf_burn(ses.hash); buf_free(ses.hash); ses.hash = NULL; if (IS_DROPBEAR_CLIENT) { trans_IV = C2S_IV; recv_IV = S2C_IV; trans_key = C2S_key; recv_key = S2C_key; mactransletter = 'E'; macrecvletter = 'F'; } else { trans_IV = S2C_IV; recv_IV = C2S_IV; trans_key = S2C_key; recv_key = C2S_key; mactransletter = 'F'; macrecvletter = 'E'; } hashkeys(C2S_IV, sizeof(C2S_IV), &hs, 'A'); hashkeys(S2C_IV, sizeof(S2C_IV), &hs, 'B'); hashkeys(C2S_key, sizeof(C2S_key), &hs, 'C'); hashkeys(S2C_key, sizeof(S2C_key), &hs, 'D'); if (ses.newkeys->recv.algo_crypt->cipherdesc != NULL) { int recv_cipher = find_cipher(ses.newkeys->recv.algo_crypt->cipherdesc->name); if (recv_cipher < 0) dropbear_exit("Crypto error"); if (ses.newkeys->recv.crypt_mode->start(recv_cipher, recv_IV, recv_key, ses.newkeys->recv.algo_crypt->keysize, 0, &ses.newkeys->recv.cipher_state) != CRYPT_OK) { dropbear_exit("Crypto error"); } } if (ses.newkeys->trans.algo_crypt->cipherdesc != NULL) { int trans_cipher = find_cipher(ses.newkeys->trans.algo_crypt->cipherdesc->name); if (trans_cipher < 0) dropbear_exit("Crypto error"); if (ses.newkeys->trans.crypt_mode->start(trans_cipher, trans_IV, trans_key, ses.newkeys->trans.algo_crypt->keysize, 0, &ses.newkeys->trans.cipher_state) != CRYPT_OK) { dropbear_exit("Crypto error"); } } if (ses.newkeys->trans.algo_mac->hash_desc != NULL) { hashkeys(ses.newkeys->trans.mackey, ses.newkeys->trans.algo_mac->keysize, &hs, mactransletter); ses.newkeys->trans.hash_index = find_hash(ses.newkeys->trans.algo_mac->hash_desc->name); } if (ses.newkeys->recv.algo_mac->hash_desc != NULL) { hashkeys(ses.newkeys->recv.mackey, ses.newkeys->recv.algo_mac->keysize, &hs, macrecvletter); ses.newkeys->recv.hash_index = find_hash(ses.newkeys->recv.algo_mac->hash_desc->name); } /* Ready to switch over */ ses.newkeys->trans.valid = 1; ses.newkeys->recv.valid = 1; m_burn(C2S_IV, sizeof(C2S_IV)); m_burn(C2S_key, sizeof(C2S_key)); m_burn(S2C_IV, sizeof(S2C_IV)); m_burn(S2C_key, sizeof(S2C_key)); m_burn(&hs, sizeof(hash_state)); TRACE(("leave gen_new_keys")) } #ifndef DISABLE_ZLIB int is_compress_trans() { return ses.keys->trans.algo_comp == DROPBEAR_COMP_ZLIB || (ses.authstate.authdone && ses.keys->trans.algo_comp == DROPBEAR_COMP_ZLIB_DELAY); } int is_compress_recv() { return ses.keys->recv.algo_comp == DROPBEAR_COMP_ZLIB || (ses.authstate.authdone && ses.keys->recv.algo_comp == DROPBEAR_COMP_ZLIB_DELAY); } /* Set up new zlib compression streams, close the old ones. Only * called from gen_new_keys() */ static void gen_new_zstream_recv() { /* create new zstreams */ if (ses.newkeys->recv.algo_comp == DROPBEAR_COMP_ZLIB || ses.newkeys->recv.algo_comp == DROPBEAR_COMP_ZLIB_DELAY) { ses.newkeys->recv.zstream = (z_streamp)m_malloc(sizeof(z_stream)); ses.newkeys->recv.zstream->zalloc = Z_NULL; ses.newkeys->recv.zstream->zfree = Z_NULL; if (inflateInit(ses.newkeys->recv.zstream) != Z_OK) { dropbear_exit("zlib error"); } } else { ses.newkeys->recv.zstream = NULL; } /* clean up old keys */ if (ses.keys->recv.zstream != NULL) { if (inflateEnd(ses.keys->recv.zstream) == Z_STREAM_ERROR) { /* Z_DATA_ERROR is ok, just means that stream isn't ended */ dropbear_exit("Crypto error"); } m_free(ses.keys->recv.zstream); } } static void gen_new_zstream_trans() { if (ses.newkeys->trans.algo_comp == DROPBEAR_COMP_ZLIB || ses.newkeys->trans.algo_comp == DROPBEAR_COMP_ZLIB_DELAY) { ses.newkeys->trans.zstream = (z_streamp)m_malloc(sizeof(z_stream)); ses.newkeys->trans.zstream->zalloc = Z_NULL; ses.newkeys->trans.zstream->zfree = Z_NULL; if (deflateInit2(ses.newkeys->trans.zstream, Z_DEFAULT_COMPRESSION, Z_DEFLATED, DROPBEAR_ZLIB_WINDOW_BITS, DROPBEAR_ZLIB_MEM_LEVEL, Z_DEFAULT_STRATEGY) != Z_OK) { dropbear_exit("zlib error"); } } else { ses.newkeys->trans.zstream = NULL; } if (ses.keys->trans.zstream != NULL) { if (deflateEnd(ses.keys->trans.zstream) == Z_STREAM_ERROR) { /* Z_DATA_ERROR is ok, just means that stream isn't ended */ dropbear_exit("Crypto error"); } m_free(ses.keys->trans.zstream); } } #endif /* DISABLE_ZLIB */ /* Executed upon receiving a kexinit message from the client to initiate * key exchange. If we haven't already done so, we send the list of our * preferred algorithms. The client's requested algorithms are processed, * and we calculate the first portion of the key-exchange-hash for used * later in the key exchange. No response is sent, as the client should * initiate the diffie-hellman key exchange */ void recv_msg_kexinit() { unsigned int kexhashbuf_len = 0; unsigned int remote_ident_len = 0; unsigned int local_ident_len = 0; TRACE(("<- KEXINIT")) TRACE(("enter recv_msg_kexinit")) if (!ses.kexstate.sentkexinit) { /* we need to send a kex packet */ send_msg_kexinit(); TRACE(("continue recv_msg_kexinit: sent kexinit")) } /* start the kex hash */ local_ident_len = strlen(LOCAL_IDENT); remote_ident_len = strlen(ses.remoteident); kexhashbuf_len = local_ident_len + remote_ident_len + ses.transkexinit->len + ses.payload->len + KEXHASHBUF_MAX_INTS; ses.kexhashbuf = buf_new(kexhashbuf_len); if (IS_DROPBEAR_CLIENT) { /* read the peer's choice of algos */ read_kex_algos(); /* V_C, the client's version string (CR and NL excluded) */ buf_putstring(ses.kexhashbuf, LOCAL_IDENT, local_ident_len); /* V_S, the server's version string (CR and NL excluded) */ buf_putstring(ses.kexhashbuf, ses.remoteident, remote_ident_len); /* I_C, the payload of the client's SSH_MSG_KEXINIT */ buf_putstring(ses.kexhashbuf, (const char*)ses.transkexinit->data, ses.transkexinit->len); /* I_S, the payload of the server's SSH_MSG_KEXINIT */ buf_setpos(ses.payload, ses.payload_beginning); buf_putstring(ses.kexhashbuf, (const char*)buf_getptr(ses.payload, ses.payload->len-ses.payload->pos), ses.payload->len-ses.payload->pos); ses.requirenext = SSH_MSG_KEXDH_REPLY; } else { /* SERVER */ /* read the peer's choice of algos */ read_kex_algos(); /* V_C, the client's version string (CR and NL excluded) */ buf_putstring(ses.kexhashbuf, ses.remoteident, remote_ident_len); /* V_S, the server's version string (CR and NL excluded) */ buf_putstring(ses.kexhashbuf, LOCAL_IDENT, local_ident_len); /* I_C, the payload of the client's SSH_MSG_KEXINIT */ buf_setpos(ses.payload, ses.payload_beginning); buf_putstring(ses.kexhashbuf, (const char*)buf_getptr(ses.payload, ses.payload->len-ses.payload->pos), ses.payload->len-ses.payload->pos); /* I_S, the payload of the server's SSH_MSG_KEXINIT */ buf_putstring(ses.kexhashbuf, (const char*)ses.transkexinit->data, ses.transkexinit->len); ses.requirenext = SSH_MSG_KEXDH_INIT; } buf_free(ses.transkexinit); ses.transkexinit = NULL; /* the rest of ses.kexhashbuf will be done after DH exchange */ ses.kexstate.recvkexinit = 1; TRACE(("leave recv_msg_kexinit")) } static void load_dh_p(mp_int * dh_p) { bytes_to_mp(dh_p, ses.newkeys->algo_kex->dh_p_bytes, ses.newkeys->algo_kex->dh_p_len); } /* Initialises and generate one side of the diffie-hellman key exchange values. * See the transport rfc 4253 section 8 for details */ /* dh_pub and dh_priv MUST be already initialised */ struct kex_dh_param *gen_kexdh_param() { struct kex_dh_param *param = NULL; DEF_MP_INT(dh_p); DEF_MP_INT(dh_q); DEF_MP_INT(dh_g); TRACE(("enter gen_kexdh_vals")) param = m_malloc(sizeof(*param)); m_mp_init_multi(¶m->pub, ¶m->priv, &dh_g, &dh_p, &dh_q, NULL); /* read the prime and generator*/ load_dh_p(&dh_p); if (mp_set_int(&dh_g, DH_G_VAL) != MP_OKAY) { dropbear_exit("Diffie-Hellman error"); } /* calculate q = (p-1)/2 */ /* dh_priv is just a temp var here */ if (mp_sub_d(&dh_p, 1, ¶m->priv) != MP_OKAY) { dropbear_exit("Diffie-Hellman error"); } if (mp_div_2(¶m->priv, &dh_q) != MP_OKAY) { dropbear_exit("Diffie-Hellman error"); } /* Generate a private portion 0 < dh_priv < dh_q */ gen_random_mpint(&dh_q, ¶m->priv); /* f = g^y mod p */ if (mp_exptmod(&dh_g, ¶m->priv, &dh_p, ¶m->pub) != MP_OKAY) { dropbear_exit("Diffie-Hellman error"); } mp_clear_multi(&dh_g, &dh_p, &dh_q, NULL); return param; } void free_kexdh_param(struct kex_dh_param *param) { mp_clear_multi(¶m->pub, ¶m->priv, NULL); m_free(param); } /* This function is fairly common between client/server, with some substitution * of dh_e/dh_f etc. Hence these arguments: * dh_pub_us is 'e' for the client, 'f' for the server. dh_pub_them is * vice-versa. dh_priv is the x/y value corresponding to dh_pub_us */ void kexdh_comb_key(struct kex_dh_param *param, mp_int *dh_pub_them, sign_key *hostkey) { DEF_MP_INT(dh_p); DEF_MP_INT(dh_p_min1); mp_int *dh_e = NULL, *dh_f = NULL; m_mp_init_multi(&dh_p, &dh_p_min1, NULL); load_dh_p(&dh_p); if (mp_sub_d(&dh_p, 1, &dh_p_min1) != MP_OKAY) { dropbear_exit("Diffie-Hellman error"); } /* Check that dh_pub_them (dh_e or dh_f) is in the range [2, p-2] */ if (mp_cmp(dh_pub_them, &dh_p_min1) != MP_LT || mp_cmp_d(dh_pub_them, 1) != MP_GT) { dropbear_exit("Diffie-Hellman error"); } /* K = e^y mod p = f^x mod p */ m_mp_alloc_init_multi(&ses.dh_K, NULL); if (mp_exptmod(dh_pub_them, ¶m->priv, &dh_p, ses.dh_K) != MP_OKAY) { dropbear_exit("Diffie-Hellman error"); } /* clear no longer needed vars */ mp_clear_multi(&dh_p, &dh_p_min1, NULL); /* From here on, the code needs to work with the _same_ vars on each side, * not vice-versaing for client/server */ if (IS_DROPBEAR_CLIENT) { dh_e = ¶m->pub; dh_f = dh_pub_them; } else { dh_e = dh_pub_them; dh_f = ¶m->pub; } /* Create the remainder of the hash buffer, to generate the exchange hash */ /* K_S, the host key */ buf_put_pub_key(ses.kexhashbuf, hostkey, ses.newkeys->algo_hostkey); /* e, exchange value sent by the client */ buf_putmpint(ses.kexhashbuf, dh_e); /* f, exchange value sent by the server */ buf_putmpint(ses.kexhashbuf, dh_f); /* K, the shared secret */ buf_putmpint(ses.kexhashbuf, ses.dh_K); /* calculate the hash H to sign */ finish_kexhashbuf(); } #ifdef DROPBEAR_ECDH struct kex_ecdh_param *gen_kexecdh_param() { struct kex_ecdh_param *param = m_malloc(sizeof(*param)); if (ecc_make_key_ex(NULL, dropbear_ltc_prng, ¶m->key, ses.newkeys->algo_kex->ecc_curve->dp) != CRYPT_OK) { dropbear_exit("ECC error"); } return param; } void free_kexecdh_param(struct kex_ecdh_param *param) { ecc_free(¶m->key); m_free(param); } void kexecdh_comb_key(struct kex_ecdh_param *param, buffer *pub_them, sign_key *hostkey) { const struct dropbear_kex *algo_kex = ses.newkeys->algo_kex; /* public keys from client and server */ ecc_key *Q_C, *Q_S, *Q_them; Q_them = buf_get_ecc_raw_pubkey(pub_them, algo_kex->ecc_curve); if (Q_them == NULL) { dropbear_exit("ECC error"); } ses.dh_K = dropbear_ecc_shared_secret(Q_them, ¶m->key); /* Create the remainder of the hash buffer, to generate the exchange hash See RFC5656 section 4 page 7 */ if (IS_DROPBEAR_CLIENT) { Q_C = ¶m->key; Q_S = Q_them; } else { Q_C = Q_them; Q_S = ¶m->key; } /* K_S, the host key */ buf_put_pub_key(ses.kexhashbuf, hostkey, ses.newkeys->algo_hostkey); /* Q_C, client's ephemeral public key octet string */ buf_put_ecc_raw_pubkey_string(ses.kexhashbuf, Q_C); /* Q_S, server's ephemeral public key octet string */ buf_put_ecc_raw_pubkey_string(ses.kexhashbuf, Q_S); /* K, the shared secret */ buf_putmpint(ses.kexhashbuf, ses.dh_K); /* calculate the hash H to sign */ finish_kexhashbuf(); } #endif /* DROPBEAR_ECDH */ #ifdef DROPBEAR_CURVE25519 struct kex_curve25519_param *gen_kexcurve25519_param () { /* Per http://cr.yp.to/ecdh.html */ struct kex_curve25519_param *param = m_malloc(sizeof(*param)); const unsigned char basepoint[32] = {9}; genrandom(param->priv, CURVE25519_LEN); param->priv[0] &= 248; param->priv[31] &= 127; param->priv[31] |= 64; curve25519_donna(param->pub, param->priv, basepoint); return param; } void free_kexcurve25519_param(struct kex_curve25519_param *param) { m_burn(param->priv, CURVE25519_LEN); m_free(param); } void kexcurve25519_comb_key(struct kex_curve25519_param *param, buffer *buf_pub_them, sign_key *hostkey) { unsigned char out[CURVE25519_LEN]; const unsigned char* Q_C = NULL; const unsigned char* Q_S = NULL; char zeroes[CURVE25519_LEN] = {0}; if (buf_pub_them->len != CURVE25519_LEN) { dropbear_exit("Bad curve25519"); } curve25519_donna(out, param->priv, buf_pub_them->data); if (constant_time_memcmp(zeroes, out, CURVE25519_LEN) == 0) { dropbear_exit("Bad curve25519"); } m_mp_alloc_init_multi(&ses.dh_K, NULL); bytes_to_mp(ses.dh_K, out, CURVE25519_LEN); m_burn(out, sizeof(out)); /* Create the remainder of the hash buffer, to generate the exchange hash. See RFC5656 section 4 page 7 */ if (IS_DROPBEAR_CLIENT) { Q_C = param->pub; Q_S = buf_pub_them->data; } else { Q_S = param->pub; Q_C = buf_pub_them->data; } /* K_S, the host key */ buf_put_pub_key(ses.kexhashbuf, hostkey, ses.newkeys->algo_hostkey); /* Q_C, client's ephemeral public key octet string */ buf_putstring(ses.kexhashbuf, (const char*)Q_C, CURVE25519_LEN); /* Q_S, server's ephemeral public key octet string */ buf_putstring(ses.kexhashbuf, (const char*)Q_S, CURVE25519_LEN); /* K, the shared secret */ buf_putmpint(ses.kexhashbuf, ses.dh_K); /* calculate the hash H to sign */ finish_kexhashbuf(); } #endif /* DROPBEAR_CURVE25519 */ static void finish_kexhashbuf(void) { hash_state hs; const struct ltc_hash_descriptor *hash_desc = ses.newkeys->algo_kex->hash_desc; hash_desc->init(&hs); buf_setpos(ses.kexhashbuf, 0); hash_desc->process(&hs, buf_getptr(ses.kexhashbuf, ses.kexhashbuf->len), ses.kexhashbuf->len); ses.hash = buf_new(hash_desc->hashsize); hash_desc->done(&hs, buf_getwriteptr(ses.hash, hash_desc->hashsize)); buf_setlen(ses.hash, hash_desc->hashsize); #if defined(DEBUG_KEXHASH) && defined(DEBUG_TRACE) if (!debug_trace) { printhex("kexhashbuf", ses.kexhashbuf->data, ses.kexhashbuf->len); printhex("kexhash", ses.hash->data, ses.hash->len); } #endif buf_burn(ses.kexhashbuf); buf_free(ses.kexhashbuf); m_burn(&hs, sizeof(hash_state)); ses.kexhashbuf = NULL; /* first time around, we set the session_id to H */ if (ses.session_id == NULL) { /* create the session_id, this never needs freeing */ ses.session_id = buf_newcopy(ses.hash); } } /* read the other side's algo list. buf_match_algo is a callback to match * algos for the client or server. */ static void read_kex_algos() { /* for asymmetry */ algo_type * c2s_hash_algo = NULL; algo_type * s2c_hash_algo = NULL; algo_type * c2s_cipher_algo = NULL; algo_type * s2c_cipher_algo = NULL; algo_type * c2s_comp_algo = NULL; algo_type * s2c_comp_algo = NULL; /* the generic one */ algo_type * algo = NULL; /* which algo couldn't match */ char * erralgo = NULL; int goodguess = 0; int allgood = 1; /* we AND this with each goodguess and see if its still true after */ #ifdef USE_KEXGUESS2 enum kexguess2_used kexguess2 = KEXGUESS2_LOOK; #else enum kexguess2_used kexguess2 = KEXGUESS2_NO; #endif buf_incrpos(ses.payload, 16); /* start after the cookie */ memset(ses.newkeys, 0x0, sizeof(*ses.newkeys)); /* kex_algorithms */ algo = buf_match_algo(ses.payload, sshkex, &kexguess2, &goodguess); allgood &= goodguess; if (algo == NULL || algo->val == KEXGUESS2_ALGO_ID) { erralgo = "kex"; goto error; } TRACE(("kexguess2 %d", kexguess2)) TRACE(("kex algo %s", algo->name)) ses.newkeys->algo_kex = algo->data; /* server_host_key_algorithms */ algo = buf_match_algo(ses.payload, sshhostkey, &kexguess2, &goodguess); allgood &= goodguess; if (algo == NULL) { erralgo = "hostkey"; goto error; } TRACE(("hostkey algo %s", algo->name)) ses.newkeys->algo_hostkey = algo->val; /* encryption_algorithms_client_to_server */ c2s_cipher_algo = buf_match_algo(ses.payload, sshciphers, NULL, NULL); if (c2s_cipher_algo == NULL) { erralgo = "enc c->s"; goto error; } TRACE(("enc c2s is %s", c2s_cipher_algo->name)) /* encryption_algorithms_server_to_client */ s2c_cipher_algo = buf_match_algo(ses.payload, sshciphers, NULL, NULL); if (s2c_cipher_algo == NULL) { erralgo = "enc s->c"; goto error; } TRACE(("enc s2c is %s", s2c_cipher_algo->name)) /* mac_algorithms_client_to_server */ c2s_hash_algo = buf_match_algo(ses.payload, sshhashes, NULL, NULL); if (c2s_hash_algo == NULL) { erralgo = "mac c->s"; goto error; } TRACE(("hash c2s is %s", c2s_hash_algo->name)) /* mac_algorithms_server_to_client */ s2c_hash_algo = buf_match_algo(ses.payload, sshhashes, NULL, NULL); if (s2c_hash_algo == NULL) { erralgo = "mac s->c"; goto error; } TRACE(("hash s2c is %s", s2c_hash_algo->name)) /* compression_algorithms_client_to_server */ c2s_comp_algo = buf_match_algo(ses.payload, ses.compress_algos, NULL, NULL); if (c2s_comp_algo == NULL) { erralgo = "comp c->s"; goto error; } TRACE(("hash c2s is %s", c2s_comp_algo->name)) /* compression_algorithms_server_to_client */ s2c_comp_algo = buf_match_algo(ses.payload, ses.compress_algos, NULL, NULL); if (s2c_comp_algo == NULL) { erralgo = "comp s->c"; goto error; } TRACE(("hash s2c is %s", s2c_comp_algo->name)) /* languages_client_to_server */ buf_eatstring(ses.payload); /* languages_server_to_client */ buf_eatstring(ses.payload); /* their first_kex_packet_follows */ if (buf_getbool(ses.payload)) { TRACE(("them kex firstfollows. allgood %d", allgood)) ses.kexstate.them_firstfollows = 1; /* if the guess wasn't good, we ignore the packet sent */ if (!allgood) { ses.ignorenext = 1; } } /* Handle the asymmetry */ if (IS_DROPBEAR_CLIENT) { ses.newkeys->recv.algo_crypt = (struct dropbear_cipher*)s2c_cipher_algo->data; ses.newkeys->trans.algo_crypt = (struct dropbear_cipher*)c2s_cipher_algo->data; ses.newkeys->recv.crypt_mode = (struct dropbear_cipher_mode*)s2c_cipher_algo->mode; ses.newkeys->trans.crypt_mode = (struct dropbear_cipher_mode*)c2s_cipher_algo->mode; ses.newkeys->recv.algo_mac = (struct dropbear_hash*)s2c_hash_algo->data; ses.newkeys->trans.algo_mac = (struct dropbear_hash*)c2s_hash_algo->data; ses.newkeys->recv.algo_comp = s2c_comp_algo->val; ses.newkeys->trans.algo_comp = c2s_comp_algo->val; } else { /* SERVER */ ses.newkeys->recv.algo_crypt = (struct dropbear_cipher*)c2s_cipher_algo->data; ses.newkeys->trans.algo_crypt = (struct dropbear_cipher*)s2c_cipher_algo->data; ses.newkeys->recv.crypt_mode = (struct dropbear_cipher_mode*)c2s_cipher_algo->mode; ses.newkeys->trans.crypt_mode = (struct dropbear_cipher_mode*)s2c_cipher_algo->mode; ses.newkeys->recv.algo_mac = (struct dropbear_hash*)c2s_hash_algo->data; ses.newkeys->trans.algo_mac = (struct dropbear_hash*)s2c_hash_algo->data; ses.newkeys->recv.algo_comp = c2s_comp_algo->val; ses.newkeys->trans.algo_comp = s2c_comp_algo->val; } #ifdef DROPBEAR_FUZZ ses.newkeys->recv.algo_crypt = &dropbear_nocipher; ses.newkeys->trans.algo_crypt = &dropbear_nocipher; ses.newkeys->recv.crypt_mode = &dropbear_mode_none; ses.newkeys->trans.crypt_mode = &dropbear_mode_none; ses.newkeys->recv.algo_mac = &dropbear_nohash; ses.newkeys->trans.algo_mac = &dropbear_nohash; ses.newkeys->recv.algo_comp = DROPBEAR_COMP_NONE; ses.newkeys->trans.algo_comp = DROPBEAR_COMP_NONE; #endif /* reserved for future extensions */ buf_getint(ses.payload); if (ses.send_kex_first_guess && allgood) { TRACE(("our_first_follows_matches 1")) ses.kexstate.our_first_follows_matches = 1; } return; error: dropbear_exit("No matching algo %s", erralgo); }