view libtomcrypt/notes/tech0006.txt @ 1653:76189c9ffea2

External Public-Key Authentication API (#72) * Implemented dynamic loading of an external plug-in shared library to delegate public key authentication * Moved conditional compilation of the plugin infrastructure into the configure.ac script to be able to add -ldl to dropbear build only when the flag is enabled * Added tags file to the ignore list * Updated API to have the constructor to return function pointers in the pliugin instance. Added support for passing user name to the checkpubkey function. Added options to the session returned by the plugin and have dropbear to parse and process them * Added -rdynamic to the linker flags when EPKA is enabled * Changed the API to pass a previously created session to the checkPubKey function (created during preauth) * Added documentation to the API * Added parameter addrstring to plugin creation function * Modified the API to retrieve the auth options. Instead of having them as field of the EPKASession struct, they are stored internally (plugin-dependent) in the plugin/session and retrieved through a pointer to a function (in the session) * Changed option string to be a simple char * instead of unsigned char *
author fabriziobertocci <fabriziobertocci@gmail.com>
date Wed, 15 May 2019 09:43:57 -0400
parents 1b9e69c058d2
children
line wrap: on
line source

Tech Note 0006
PK Standards Compliance
Tom St Denis

RSA
----

PKCS #1 compliance.

Key Format:  RSAPublicKey and RSAPrivateKey as per PKCS #1 v2.1
Encryption:  OAEP as per PKCS #1
Signature :  PSS  as per PKCS #1

DSA
----

The NIST DSA algorithm

Key Format:  HomeBrew [see below]
Signature :  ANSI X9.62 format [see below].

Keys are stored as 

DSAPublicKey ::= SEQUENCE {
    publicFlags    BIT STRING(1), -- must be 0
    g              INTEGER      , -- base generator, check that g^q mod p == 1
                                  -- and that 1 < g < p - 1
    p              INTEGER      , -- prime modulus 
    q              INTEGER      , -- order of sub-group (must be prime)
    y              INTEGER      , -- public key, specifically, g^x mod p, 
                                  -- check that y^q mod p == 1
                                  -- and that 1 < y < p - 1
}

DSAPrivateKey ::= SEQUENCE {
    publicFlags    BIT STRING(1), -- must be 1
    g              INTEGER      , -- base generator, check that g^q mod p == 1
                                  -- and that 1 < g < p - 1
    p              INTEGER      , -- prime modulus 
    q              INTEGER      , -- order of sub-group (must be prime)
    y              INTEGER      , -- public key, specifically, g^x mod p, 
                                  -- check that y^q mod p == 1
                                  -- and that 1 < y < p - 1
    x              INTEGER        -- private key
}

Signatures are stored as 

DSASignature ::= SEQUENCE {
    r, s           INTEGER        -- signature parameters
}

ECC
----

The ANSI X9.62 and X9.63 algorithms [partial].  Supports all NIST GF(p) curves.

Key Format   :  Homebrew [see below, only GF(p) NIST curves supported]
Signature    :  X9.62 compliant
Encryption   :  Homebrew [based on X9.63, differs in that the public point is stored as an ECCPublicKey]
Shared Secret:  X9.63 compliant

ECCPublicKey ::= SEQUENCE {
    flags       BIT STRING(1), -- public/private flag (always zero), 
    keySize     INTEGER,       -- Curve size (in bits) divided by eight 
                               -- and rounded down, e.g. 521 => 65
    pubkey.x    INTEGER,       -- The X co-ordinate of the public key point
    pubkey.y    INTEGER,       -- The Y co-ordinate of the public key point
}

ECCPrivateKey ::= SEQUENCE {
    flags       BIT STRING(1), -- public/private flag (always one), 
    keySize     INTEGER,       -- Curve size (in bits) divided by eight 
                               -- and rounded down, e.g. 521 => 65
    pubkey.x    INTEGER,       -- The X co-ordinate of the public key point
    pubkey.y    INTEGER,       -- The Y co-ordinate of the public key point
    secret.k    INTEGER,       -- The secret key scalar
}

The encryption works by finding the X9.63 shared secret and hashing it.  The hash is then simply XOR'ed against the message [which must be at most the size
of the hash digest].  The format of the encrypted text is as follows

ECCEncrypted ::= SEQUENCE {
    hashOID     OBJECT IDENTIFIER,   -- The OID of the hash used
    pubkey      OCTET STRING     ,   -- Encapsulation of a random ECCPublicKey
    skey        OCTET STRING         -- The encrypted text (which the hash was XOR'ed against)
}

% $Source: /cvs/libtom/libtomcrypt/notes/tech0006.txt,v $   
% $Revision: 1.2 $   
% $Date: 2005/06/18 02:26:27 $