view libtomcrypt/src/ciphers/xtea.c @ 1653:76189c9ffea2

External Public-Key Authentication API (#72) * Implemented dynamic loading of an external plug-in shared library to delegate public key authentication * Moved conditional compilation of the plugin infrastructure into the configure.ac script to be able to add -ldl to dropbear build only when the flag is enabled * Added tags file to the ignore list * Updated API to have the constructor to return function pointers in the pliugin instance. Added support for passing user name to the checkpubkey function. Added options to the session returned by the plugin and have dropbear to parse and process them * Added -rdynamic to the linker flags when EPKA is enabled * Changed the API to pass a previously created session to the checkPubKey function (created during preauth) * Added documentation to the API * Added parameter addrstring to plugin creation function * Modified the API to retrieve the auth options. Instead of having them as field of the EPKASession struct, they are stored internally (plugin-dependent) in the plugin/session and retrieved through a pointer to a function (in the session) * Changed option string to be a simple char * instead of unsigned char *
author fabriziobertocci <fabriziobertocci@gmail.com>
date Wed, 15 May 2019 09:43:57 -0400
parents 6dba84798cd5
children
line wrap: on
line source

/* LibTomCrypt, modular cryptographic library -- Tom St Denis
 *
 * LibTomCrypt is a library that provides various cryptographic
 * algorithms in a highly modular and flexible manner.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 */

/**
  @file xtea.c
  Implementation of LTC_XTEA, Tom St Denis
*/
#include "tomcrypt.h"

#ifdef LTC_XTEA

const struct ltc_cipher_descriptor xtea_desc =
{
    "xtea",
    1,
    16, 16, 8, 32,
    &xtea_setup,
    &xtea_ecb_encrypt,
    &xtea_ecb_decrypt,
    &xtea_test,
    &xtea_done,
    &xtea_keysize,
    NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
};

int xtea_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
{
   ulong32 x, sum, K[4];

   LTC_ARGCHK(key != NULL);
   LTC_ARGCHK(skey != NULL);

   /* check arguments */
   if (keylen != 16) {
      return CRYPT_INVALID_KEYSIZE;
   }

   if (num_rounds != 0 && num_rounds != 32) {
      return CRYPT_INVALID_ROUNDS;
   }

   /* load key */
   LOAD32H(K[0], key+0);
   LOAD32H(K[1], key+4);
   LOAD32H(K[2], key+8);
   LOAD32H(K[3], key+12);

   for (x = sum = 0; x < 32; x++) {
       skey->xtea.A[x] = (sum + K[sum&3]) & 0xFFFFFFFFUL;
       sum = (sum + 0x9E3779B9UL) & 0xFFFFFFFFUL;
       skey->xtea.B[x] = (sum + K[(sum>>11)&3]) & 0xFFFFFFFFUL;
   }

#ifdef LTC_CLEAN_STACK
   zeromem(&K, sizeof(K));
#endif

   return CRYPT_OK;
}

/**
  Encrypts a block of text with LTC_XTEA
  @param pt The input plaintext (8 bytes)
  @param ct The output ciphertext (8 bytes)
  @param skey The key as scheduled
  @return CRYPT_OK if successful
*/
int xtea_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
{
   ulong32 y, z;
   int r;

   LTC_ARGCHK(pt   != NULL);
   LTC_ARGCHK(ct   != NULL);
   LTC_ARGCHK(skey != NULL);

   LOAD32H(y, &pt[0]);
   LOAD32H(z, &pt[4]);
   for (r = 0; r < 32; r += 4) {
       y = (y + ((((z<<4)^(z>>5)) + z) ^ skey->xtea.A[r])) & 0xFFFFFFFFUL;
       z = (z + ((((y<<4)^(y>>5)) + y) ^ skey->xtea.B[r])) & 0xFFFFFFFFUL;

       y = (y + ((((z<<4)^(z>>5)) + z) ^ skey->xtea.A[r+1])) & 0xFFFFFFFFUL;
       z = (z + ((((y<<4)^(y>>5)) + y) ^ skey->xtea.B[r+1])) & 0xFFFFFFFFUL;

       y = (y + ((((z<<4)^(z>>5)) + z) ^ skey->xtea.A[r+2])) & 0xFFFFFFFFUL;
       z = (z + ((((y<<4)^(y>>5)) + y) ^ skey->xtea.B[r+2])) & 0xFFFFFFFFUL;

       y = (y + ((((z<<4)^(z>>5)) + z) ^ skey->xtea.A[r+3])) & 0xFFFFFFFFUL;
       z = (z + ((((y<<4)^(y>>5)) + y) ^ skey->xtea.B[r+3])) & 0xFFFFFFFFUL;
   }
   STORE32H(y, &ct[0]);
   STORE32H(z, &ct[4]);
   return CRYPT_OK;
}

/**
  Decrypts a block of text with LTC_XTEA
  @param ct The input ciphertext (8 bytes)
  @param pt The output plaintext (8 bytes)
  @param skey The key as scheduled
  @return CRYPT_OK if successful
*/
int xtea_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
{
   ulong32 y, z;
   int r;

   LTC_ARGCHK(pt   != NULL);
   LTC_ARGCHK(ct   != NULL);
   LTC_ARGCHK(skey != NULL);

   LOAD32H(y, &ct[0]);
   LOAD32H(z, &ct[4]);
   for (r = 31; r >= 0; r -= 4) {
       z = (z - ((((y<<4)^(y>>5)) + y) ^ skey->xtea.B[r])) & 0xFFFFFFFFUL;
       y = (y - ((((z<<4)^(z>>5)) + z) ^ skey->xtea.A[r])) & 0xFFFFFFFFUL;

       z = (z - ((((y<<4)^(y>>5)) + y) ^ skey->xtea.B[r-1])) & 0xFFFFFFFFUL;
       y = (y - ((((z<<4)^(z>>5)) + z) ^ skey->xtea.A[r-1])) & 0xFFFFFFFFUL;

       z = (z - ((((y<<4)^(y>>5)) + y) ^ skey->xtea.B[r-2])) & 0xFFFFFFFFUL;
       y = (y - ((((z<<4)^(z>>5)) + z) ^ skey->xtea.A[r-2])) & 0xFFFFFFFFUL;

       z = (z - ((((y<<4)^(y>>5)) + y) ^ skey->xtea.B[r-3])) & 0xFFFFFFFFUL;
       y = (y - ((((z<<4)^(z>>5)) + z) ^ skey->xtea.A[r-3])) & 0xFFFFFFFFUL;
   }
   STORE32H(y, &pt[0]);
   STORE32H(z, &pt[4]);
   return CRYPT_OK;
}

/**
  Performs a self-test of the LTC_XTEA block cipher
  @return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
*/
int xtea_test(void)
{
 #ifndef LTC_TEST
    return CRYPT_NOP;
 #else
    static const struct {
        unsigned char key[16], pt[8], ct[8];
    } tests[] = {
       {
         { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
           0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
         { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
         { 0xde, 0xe9, 0xd4, 0xd8, 0xf7, 0x13, 0x1e, 0xd9 }
       }, {
         { 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x02,
           0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x04 },
         { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
         { 0xa5, 0x97, 0xab, 0x41, 0x76, 0x01, 0x4d, 0x72 }
       }, {
         { 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x04,
           0x00, 0x00, 0x00, 0x05, 0x00, 0x00, 0x00, 0x06 },
         { 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x02 },
         { 0xb1, 0xfd, 0x5d, 0xa9, 0xcc, 0x6d, 0xc9, 0xdc }
       }, {
         { 0x78, 0x69, 0x5a, 0x4b, 0x3c, 0x2d, 0x1e, 0x0f,
           0xf0, 0xe1, 0xd2, 0xc3, 0xb4, 0xa5, 0x96, 0x87 },
         { 0xf0, 0xe1, 0xd2, 0xc3, 0xb4, 0xa5, 0x96, 0x87 },
         { 0x70, 0x4b, 0x31, 0x34, 0x47, 0x44, 0xdf, 0xab }
       }, {
         { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
           0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f },
         { 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48 },
         { 0x49, 0x7d, 0xf3, 0xd0, 0x72, 0x61, 0x2c, 0xb5 }
       }, {
         { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
           0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f },
         { 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41 },
         { 0xe7, 0x8f, 0x2d, 0x13, 0x74, 0x43, 0x41, 0xd8 }
       }, {
         { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
           0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f },
         { 0x5a, 0x5b, 0x6e, 0x27, 0x89, 0x48, 0xd7, 0x7f },
         { 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41 }
       }, {
         { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
           0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
         { 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48 },
         { 0xa0, 0x39, 0x05, 0x89, 0xf8, 0xb8, 0xef, 0xa5 }
       }, {
         { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
           0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
         { 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41 },
         { 0xed, 0x23, 0x37, 0x5a, 0x82, 0x1a, 0x8c, 0x2d }
       }, {
         { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
           0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
         { 0x70, 0xe1, 0x22, 0x5d, 0x6e, 0x4e, 0x76, 0x55 },
         { 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41 }
       }
    };
   unsigned char tmp[2][8];
   symmetric_key skey;
   int i, err, y;
   for (i = 0; i < (int)(sizeof(tests)/sizeof(tests[0])); i++) {
       zeromem(&skey, sizeof(skey));
       if ((err = xtea_setup(tests[i].key, 16, 0, &skey)) != CRYPT_OK)  {
          return err;
       }
       xtea_ecb_encrypt(tests[i].pt, tmp[0], &skey);
       xtea_ecb_decrypt(tmp[0], tmp[1], &skey);

       if (compare_testvector(tmp[0], 8, tests[i].ct, 8, "XTEA Encrypt", i) != 0 ||
             compare_testvector(tmp[1], 8, tests[i].pt, 8, "XTEA Decrypt", i) != 0) {
          return CRYPT_FAIL_TESTVECTOR;
       }

      /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
      for (y = 0; y < 8; y++) tmp[0][y] = 0;
      for (y = 0; y < 1000; y++) xtea_ecb_encrypt(tmp[0], tmp[0], &skey);
      for (y = 0; y < 1000; y++) xtea_ecb_decrypt(tmp[0], tmp[0], &skey);
      for (y = 0; y < 8; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
   } /* for */

   return CRYPT_OK;
 #endif
}

/** Terminate the context
   @param skey    The scheduled key
*/
void xtea_done(symmetric_key *skey)
{
  LTC_UNUSED_PARAM(skey);
}

/**
  Gets suitable key size
  @param keysize [in/out] The length of the recommended key (in bytes).  This function will store the suitable size back in this variable.
  @return CRYPT_OK if the input key size is acceptable.
*/
int xtea_keysize(int *keysize)
{
   LTC_ARGCHK(keysize != NULL);
   if (*keysize < 16) {
      return CRYPT_INVALID_KEYSIZE;
   }
   *keysize = 16;
   return CRYPT_OK;
}


#endif




/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */