view libtomcrypt/src/math/tfm_desc.c @ 1653:76189c9ffea2

External Public-Key Authentication API (#72) * Implemented dynamic loading of an external plug-in shared library to delegate public key authentication * Moved conditional compilation of the plugin infrastructure into the configure.ac script to be able to add -ldl to dropbear build only when the flag is enabled * Added tags file to the ignore list * Updated API to have the constructor to return function pointers in the pliugin instance. Added support for passing user name to the checkpubkey function. Added options to the session returned by the plugin and have dropbear to parse and process them * Added -rdynamic to the linker flags when EPKA is enabled * Changed the API to pass a previously created session to the checkPubKey function (created during preauth) * Added documentation to the API * Added parameter addrstring to plugin creation function * Modified the API to retrieve the auth options. Instead of having them as field of the EPKASession struct, they are stored internally (plugin-dependent) in the plugin/session and retrieved through a pointer to a function (in the session) * Changed option string to be a simple char * instead of unsigned char *
author fabriziobertocci <fabriziobertocci@gmail.com>
date Wed, 15 May 2019 09:43:57 -0400
parents 6dba84798cd5
children
line wrap: on
line source

/* LibTomCrypt, modular cryptographic library -- Tom St Denis
 *
 * LibTomCrypt is a library that provides various cryptographic
 * algorithms in a highly modular and flexible manner.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 */

#define DESC_DEF_ONLY
#include "tomcrypt.h"

#ifdef TFM_DESC

#include <tfm.h>

static const struct {
    int tfm_code, ltc_code;
} tfm_to_ltc_codes[] = {
   { FP_OKAY ,  CRYPT_OK},
   { FP_MEM  ,  CRYPT_MEM},
   { FP_VAL  ,  CRYPT_INVALID_ARG},
};

/**
   Convert a tfm error to a LTC error (Possibly the most powerful function ever!  Oh wait... no)
   @param err    The error to convert
   @return The equivalent LTC error code or CRYPT_ERROR if none found
*/
static int tfm_to_ltc_error(int err)
{
   int x;

   for (x = 0; x < (int)(sizeof(tfm_to_ltc_codes)/sizeof(tfm_to_ltc_codes[0])); x++) {
       if (err == tfm_to_ltc_codes[x].tfm_code) {
          return tfm_to_ltc_codes[x].ltc_code;
       }
   }
   return CRYPT_ERROR;
}

static int init(void **a)
{
   LTC_ARGCHK(a != NULL);

   *a = XCALLOC(1, sizeof(fp_int));
   if (*a == NULL) {
      return CRYPT_MEM;
   }
   fp_init(*a);
   return CRYPT_OK;
}

static void deinit(void *a)
{
   LTC_ARGCHKVD(a != NULL);
   XFREE(a);
}

static int neg(void *a, void *b)
{
   LTC_ARGCHK(a != NULL);
   LTC_ARGCHK(b != NULL);
   fp_neg(((fp_int*)a), ((fp_int*)b));
   return CRYPT_OK;
}

static int copy(void *a, void *b)
{
   LTC_ARGCHK(a != NULL);
   LTC_ARGCHK(b != NULL);
   fp_copy(a, b);
   return CRYPT_OK;
}

static int init_copy(void **a, void *b)
{
   if (init(a) != CRYPT_OK) {
      return CRYPT_MEM;
   }
   return copy(b, *a);
}

/* ---- trivial ---- */
static int set_int(void *a, ltc_mp_digit b)
{
   LTC_ARGCHK(a != NULL);
   fp_set(a, b);
   return CRYPT_OK;
}

static unsigned long get_int(void *a)
{
   fp_int *A;
   LTC_ARGCHK(a != NULL);
   A = a;
   return A->used > 0 ? A->dp[0] : 0;
}

static ltc_mp_digit get_digit(void *a, int n)
{
   fp_int *A;
   LTC_ARGCHK(a != NULL);
   A = a;
   return (n >= A->used || n < 0) ? 0 : A->dp[n];
}

static int get_digit_count(void *a)
{
   fp_int *A;
   LTC_ARGCHK(a != NULL);
   A = a;
   return A->used;
}

static int compare(void *a, void *b)
{
   int ret;
   LTC_ARGCHK(a != NULL);
   LTC_ARGCHK(b != NULL);
   ret = fp_cmp(a, b);
   switch (ret) {
      case FP_LT: return LTC_MP_LT;
      case FP_EQ: return LTC_MP_EQ;
      case FP_GT: return LTC_MP_GT;
   }
   return 0;
}

static int compare_d(void *a, ltc_mp_digit b)
{
   int ret;
   LTC_ARGCHK(a != NULL);
   ret = fp_cmp_d(a, b);
   switch (ret) {
      case FP_LT: return LTC_MP_LT;
      case FP_EQ: return LTC_MP_EQ;
      case FP_GT: return LTC_MP_GT;
   }
   return 0;
}

static int count_bits(void *a)
{
   LTC_ARGCHK(a != NULL);
   return fp_count_bits(a);
}

static int count_lsb_bits(void *a)
{
   LTC_ARGCHK(a != NULL);
   return fp_cnt_lsb(a);
}

static int twoexpt(void *a, int n)
{
   LTC_ARGCHK(a != NULL);
   fp_2expt(a, n);
   return CRYPT_OK;
}

/* ---- conversions ---- */

/* read ascii string */
static int read_radix(void *a, const char *b, int radix)
{
   LTC_ARGCHK(a != NULL);
   LTC_ARGCHK(b != NULL);
   return tfm_to_ltc_error(fp_read_radix(a, (char *)b, radix));
}

/* write one */
static int write_radix(void *a, char *b, int radix)
{
   LTC_ARGCHK(a != NULL);
   LTC_ARGCHK(b != NULL);
   return tfm_to_ltc_error(fp_toradix(a, b, radix));
}

/* get size as unsigned char string */
static unsigned long unsigned_size(void *a)
{
   LTC_ARGCHK(a != NULL);
   return fp_unsigned_bin_size(a);
}

/* store */
static int unsigned_write(void *a, unsigned char *b)
{
   LTC_ARGCHK(a != NULL);
   LTC_ARGCHK(b != NULL);
   fp_to_unsigned_bin(a, b);
   return CRYPT_OK;
}

/* read */
static int unsigned_read(void *a, unsigned char *b, unsigned long len)
{
   LTC_ARGCHK(a != NULL);
   LTC_ARGCHK(b != NULL);
   fp_read_unsigned_bin(a, b, len);
   return CRYPT_OK;
}

/* add */
static int add(void *a, void *b, void *c)
{
   LTC_ARGCHK(a != NULL);
   LTC_ARGCHK(b != NULL);
   LTC_ARGCHK(c != NULL);
   fp_add(a, b, c);
   return CRYPT_OK;
}

static int addi(void *a, ltc_mp_digit b, void *c)
{
   LTC_ARGCHK(a != NULL);
   LTC_ARGCHK(c != NULL);
   fp_add_d(a, b, c);
   return CRYPT_OK;
}

/* sub */
static int sub(void *a, void *b, void *c)
{
   LTC_ARGCHK(a != NULL);
   LTC_ARGCHK(b != NULL);
   LTC_ARGCHK(c != NULL);
   fp_sub(a, b, c);
   return CRYPT_OK;
}

static int subi(void *a, ltc_mp_digit b, void *c)
{
   LTC_ARGCHK(a != NULL);
   LTC_ARGCHK(c != NULL);
   fp_sub_d(a, b, c);
   return CRYPT_OK;
}

/* mul */
static int mul(void *a, void *b, void *c)
{
   LTC_ARGCHK(a != NULL);
   LTC_ARGCHK(b != NULL);
   LTC_ARGCHK(c != NULL);
   fp_mul(a, b, c);
   return CRYPT_OK;
}

static int muli(void *a, ltc_mp_digit b, void *c)
{
   LTC_ARGCHK(a != NULL);
   LTC_ARGCHK(c != NULL);
   fp_mul_d(a, b, c);
   return CRYPT_OK;
}

/* sqr */
static int sqr(void *a, void *b)
{
   LTC_ARGCHK(a != NULL);
   LTC_ARGCHK(b != NULL);
   fp_sqr(a, b);
   return CRYPT_OK;
}

/* div */
static int divide(void *a, void *b, void *c, void *d)
{
   LTC_ARGCHK(a != NULL);
   LTC_ARGCHK(b != NULL);
   return tfm_to_ltc_error(fp_div(a, b, c, d));
}

static int div_2(void *a, void *b)
{
   LTC_ARGCHK(a != NULL);
   LTC_ARGCHK(b != NULL);
   fp_div_2(a, b);
   return CRYPT_OK;
}

/* modi */
static int modi(void *a, ltc_mp_digit b, ltc_mp_digit *c)
{
   fp_digit tmp;
   int      err;

   LTC_ARGCHK(a != NULL);
   LTC_ARGCHK(c != NULL);

   if ((err = tfm_to_ltc_error(fp_mod_d(a, b, &tmp))) != CRYPT_OK) {
      return err;
   }
   *c = tmp;
   return CRYPT_OK;
}

/* gcd */
static int gcd(void *a, void *b, void *c)
{
   LTC_ARGCHK(a != NULL);
   LTC_ARGCHK(b != NULL);
   LTC_ARGCHK(c != NULL);
   fp_gcd(a, b, c);
   return CRYPT_OK;
}

/* lcm */
static int lcm(void *a, void *b, void *c)
{
   LTC_ARGCHK(a != NULL);
   LTC_ARGCHK(b != NULL);
   LTC_ARGCHK(c != NULL);
   fp_lcm(a, b, c);
   return CRYPT_OK;
}

static int addmod(void *a, void *b, void *c, void *d)
{
   LTC_ARGCHK(a != NULL);
   LTC_ARGCHK(b != NULL);
   LTC_ARGCHK(c != NULL);
   LTC_ARGCHK(d != NULL);
   return tfm_to_ltc_error(fp_addmod(a,b,c,d));
}

static int submod(void *a, void *b, void *c, void *d)
{
   LTC_ARGCHK(a != NULL);
   LTC_ARGCHK(b != NULL);
   LTC_ARGCHK(c != NULL);
   LTC_ARGCHK(d != NULL);
   return tfm_to_ltc_error(fp_submod(a,b,c,d));
}

static int mulmod(void *a, void *b, void *c, void *d)
{
   LTC_ARGCHK(a != NULL);
   LTC_ARGCHK(b != NULL);
   LTC_ARGCHK(c != NULL);
   LTC_ARGCHK(d != NULL);
   return tfm_to_ltc_error(fp_mulmod(a,b,c,d));
}

static int sqrmod(void *a, void *b, void *c)
{
   LTC_ARGCHK(a != NULL);
   LTC_ARGCHK(b != NULL);
   LTC_ARGCHK(c != NULL);
   return tfm_to_ltc_error(fp_sqrmod(a,b,c));
}

/* invmod */
static int invmod(void *a, void *b, void *c)
{
   LTC_ARGCHK(a != NULL);
   LTC_ARGCHK(b != NULL);
   LTC_ARGCHK(c != NULL);
   return tfm_to_ltc_error(fp_invmod(a, b, c));
}

/* setup */
static int montgomery_setup(void *a, void **b)
{
   int err;
   LTC_ARGCHK(a != NULL);
   LTC_ARGCHK(b != NULL);
   *b = XCALLOC(1, sizeof(fp_digit));
   if (*b == NULL) {
      return CRYPT_MEM;
   }
   if ((err = tfm_to_ltc_error(fp_montgomery_setup(a, (fp_digit *)*b))) != CRYPT_OK) {
      XFREE(*b);
   }
   return err;
}

/* get normalization value */
static int montgomery_normalization(void *a, void *b)
{
   LTC_ARGCHK(a != NULL);
   LTC_ARGCHK(b != NULL);
   fp_montgomery_calc_normalization(a, b);
   return CRYPT_OK;
}

/* reduce */
static int montgomery_reduce(void *a, void *b, void *c)
{
   LTC_ARGCHK(a != NULL);
   LTC_ARGCHK(b != NULL);
   LTC_ARGCHK(c != NULL);
   fp_montgomery_reduce(a, b, *((fp_digit *)c));
   return CRYPT_OK;
}

/* clean up */
static void montgomery_deinit(void *a)
{
   XFREE(a);
}

static int exptmod(void *a, void *b, void *c, void *d)
{
   LTC_ARGCHK(a != NULL);
   LTC_ARGCHK(b != NULL);
   LTC_ARGCHK(c != NULL);
   LTC_ARGCHK(d != NULL);
   return tfm_to_ltc_error(fp_exptmod(a,b,c,d));
}

static int isprime(void *a, int b, int *c)
{
   LTC_ARGCHK(a != NULL);
   LTC_ARGCHK(c != NULL);
   if (b == 0) {
       b = LTC_MILLER_RABIN_REPS;
   } /* if */
   *c = (fp_isprime_ex(a, b) == FP_YES) ? LTC_MP_YES : LTC_MP_NO;
   return CRYPT_OK;
}

#if defined(LTC_MECC) && defined(LTC_MECC_ACCEL)

static int tfm_ecc_projective_dbl_point(ecc_point *P, ecc_point *R, void *modulus, void *Mp)
{
   fp_int t1, t2;
   fp_digit mp;

   LTC_ARGCHK(P       != NULL);
   LTC_ARGCHK(R       != NULL);
   LTC_ARGCHK(modulus != NULL);
   LTC_ARGCHK(Mp      != NULL);

   mp = *((fp_digit*)Mp);

   fp_init(&t1);
   fp_init(&t2);

   if (P != R) {
      fp_copy(P->x, R->x);
      fp_copy(P->y, R->y);
      fp_copy(P->z, R->z);
   }

   /* t1 = Z * Z */
   fp_sqr(R->z, &t1);
   fp_montgomery_reduce(&t1, modulus, mp);
   /* Z = Y * Z */
   fp_mul(R->z, R->y, R->z);
   fp_montgomery_reduce(R->z, modulus, mp);
   /* Z = 2Z */
   fp_add(R->z, R->z, R->z);
   if (fp_cmp(R->z, modulus) != FP_LT) {
      fp_sub(R->z, modulus, R->z);
   }

   /* &t2 = X - T1 */
   fp_sub(R->x, &t1, &t2);
   if (fp_cmp_d(&t2, 0) == FP_LT) {
      fp_add(&t2, modulus, &t2);
   }
   /* T1 = X + T1 */
   fp_add(&t1, R->x, &t1);
   if (fp_cmp(&t1, modulus) != FP_LT) {
      fp_sub(&t1, modulus, &t1);
   }
   /* T2 = T1 * T2 */
   fp_mul(&t1, &t2, &t2);
   fp_montgomery_reduce(&t2, modulus, mp);
   /* T1 = 2T2 */
   fp_add(&t2, &t2, &t1);
   if (fp_cmp(&t1, modulus) != FP_LT) {
      fp_sub(&t1, modulus, &t1);
   }
   /* T1 = T1 + T2 */
   fp_add(&t1, &t2, &t1);
   if (fp_cmp(&t1, modulus) != FP_LT) {
      fp_sub(&t1, modulus, &t1);
   }

   /* Y = 2Y */
   fp_add(R->y, R->y, R->y);
   if (fp_cmp(R->y, modulus) != FP_LT) {
      fp_sub(R->y, modulus, R->y);
   }
   /* Y = Y * Y */
   fp_sqr(R->y, R->y);
   fp_montgomery_reduce(R->y, modulus, mp);
   /* T2 = Y * Y */
   fp_sqr(R->y, &t2);
   fp_montgomery_reduce(&t2, modulus, mp);
   /* T2 = T2/2 */
   if (fp_isodd(&t2)) {
      fp_add(&t2, modulus, &t2);
   }
   fp_div_2(&t2, &t2);
   /* Y = Y * X */
   fp_mul(R->y, R->x, R->y);
   fp_montgomery_reduce(R->y, modulus, mp);

   /* X  = T1 * T1 */
   fp_sqr(&t1, R->x);
   fp_montgomery_reduce(R->x, modulus, mp);
   /* X = X - Y */
   fp_sub(R->x, R->y, R->x);
   if (fp_cmp_d(R->x, 0) == FP_LT) {
      fp_add(R->x, modulus, R->x);
   }
   /* X = X - Y */
   fp_sub(R->x, R->y, R->x);
   if (fp_cmp_d(R->x, 0) == FP_LT) {
      fp_add(R->x, modulus, R->x);
   }

   /* Y = Y - X */
   fp_sub(R->y, R->x, R->y);
   if (fp_cmp_d(R->y, 0) == FP_LT) {
      fp_add(R->y, modulus, R->y);
   }
   /* Y = Y * T1 */
   fp_mul(R->y, &t1, R->y);
   fp_montgomery_reduce(R->y, modulus, mp);
   /* Y = Y - T2 */
   fp_sub(R->y, &t2, R->y);
   if (fp_cmp_d(R->y, 0) == FP_LT) {
      fp_add(R->y, modulus, R->y);
   }

   return CRYPT_OK;
}

/**
   Add two ECC points
   @param P        The point to add
   @param Q        The point to add
   @param R        [out] The destination of the double
   @param modulus  The modulus of the field the ECC curve is in
   @param Mp       The "b" value from montgomery_setup()
   @return CRYPT_OK on success
*/
static int tfm_ecc_projective_add_point(ecc_point *P, ecc_point *Q, ecc_point *R, void *modulus, void *Mp)
{
   fp_int  t1, t2, x, y, z;
   fp_digit mp;

   LTC_ARGCHK(P       != NULL);
   LTC_ARGCHK(Q       != NULL);
   LTC_ARGCHK(R       != NULL);
   LTC_ARGCHK(modulus != NULL);
   LTC_ARGCHK(Mp      != NULL);

   mp = *((fp_digit*)Mp);

   fp_init(&t1);
   fp_init(&t2);
   fp_init(&x);
   fp_init(&y);
   fp_init(&z);

   /* should we dbl instead? */
   fp_sub(modulus, Q->y, &t1);
   if ( (fp_cmp(P->x, Q->x) == FP_EQ) &&
        (Q->z != NULL && fp_cmp(P->z, Q->z) == FP_EQ) &&
        (fp_cmp(P->y, Q->y) == FP_EQ || fp_cmp(P->y, &t1) == FP_EQ)) {
        return tfm_ecc_projective_dbl_point(P, R, modulus, Mp);
   }

   fp_copy(P->x, &x);
   fp_copy(P->y, &y);
   fp_copy(P->z, &z);

   /* if Z is one then these are no-operations */
   if (Q->z != NULL) {
      /* T1 = Z' * Z' */
      fp_sqr(Q->z, &t1);
      fp_montgomery_reduce(&t1, modulus, mp);
      /* X = X * T1 */
      fp_mul(&t1, &x, &x);
      fp_montgomery_reduce(&x, modulus, mp);
      /* T1 = Z' * T1 */
      fp_mul(Q->z, &t1, &t1);
      fp_montgomery_reduce(&t1, modulus, mp);
      /* Y = Y * T1 */
      fp_mul(&t1, &y, &y);
      fp_montgomery_reduce(&y, modulus, mp);
   }

   /* T1 = Z*Z */
   fp_sqr(&z, &t1);
   fp_montgomery_reduce(&t1, modulus, mp);
   /* T2 = X' * T1 */
   fp_mul(Q->x, &t1, &t2);
   fp_montgomery_reduce(&t2, modulus, mp);
   /* T1 = Z * T1 */
   fp_mul(&z, &t1, &t1);
   fp_montgomery_reduce(&t1, modulus, mp);
   /* T1 = Y' * T1 */
   fp_mul(Q->y, &t1, &t1);
   fp_montgomery_reduce(&t1, modulus, mp);

   /* Y = Y - T1 */
   fp_sub(&y, &t1, &y);
   if (fp_cmp_d(&y, 0) == FP_LT) {
      fp_add(&y, modulus, &y);
   }
   /* T1 = 2T1 */
   fp_add(&t1, &t1, &t1);
   if (fp_cmp(&t1, modulus) != FP_LT) {
      fp_sub(&t1, modulus, &t1);
   }
   /* T1 = Y + T1 */
   fp_add(&t1, &y, &t1);
   if (fp_cmp(&t1, modulus) != FP_LT) {
      fp_sub(&t1, modulus, &t1);
   }
   /* X = X - T2 */
   fp_sub(&x, &t2, &x);
   if (fp_cmp_d(&x, 0) == FP_LT) {
      fp_add(&x, modulus, &x);
   }
   /* T2 = 2T2 */
   fp_add(&t2, &t2, &t2);
   if (fp_cmp(&t2, modulus) != FP_LT) {
      fp_sub(&t2, modulus, &t2);
   }
   /* T2 = X + T2 */
   fp_add(&t2, &x, &t2);
   if (fp_cmp(&t2, modulus) != FP_LT) {
      fp_sub(&t2, modulus, &t2);
   }

   /* if Z' != 1 */
   if (Q->z != NULL) {
      /* Z = Z * Z' */
      fp_mul(&z, Q->z, &z);
      fp_montgomery_reduce(&z, modulus, mp);
   }

   /* Z = Z * X */
   fp_mul(&z, &x, &z);
   fp_montgomery_reduce(&z, modulus, mp);

   /* T1 = T1 * X  */
   fp_mul(&t1, &x, &t1);
   fp_montgomery_reduce(&t1, modulus, mp);
   /* X = X * X */
   fp_sqr(&x, &x);
   fp_montgomery_reduce(&x, modulus, mp);
   /* T2 = T2 * x */
   fp_mul(&t2, &x, &t2);
   fp_montgomery_reduce(&t2, modulus, mp);
   /* T1 = T1 * X  */
   fp_mul(&t1, &x, &t1);
   fp_montgomery_reduce(&t1, modulus, mp);

   /* X = Y*Y */
   fp_sqr(&y, &x);
   fp_montgomery_reduce(&x, modulus, mp);
   /* X = X - T2 */
   fp_sub(&x, &t2, &x);
   if (fp_cmp_d(&x, 0) == FP_LT) {
      fp_add(&x, modulus, &x);
   }

   /* T2 = T2 - X */
   fp_sub(&t2, &x, &t2);
   if (fp_cmp_d(&t2, 0) == FP_LT) {
      fp_add(&t2, modulus, &t2);
   }
   /* T2 = T2 - X */
   fp_sub(&t2, &x, &t2);
   if (fp_cmp_d(&t2, 0) == FP_LT) {
      fp_add(&t2, modulus, &t2);
   }
   /* T2 = T2 * Y */
   fp_mul(&t2, &y, &t2);
   fp_montgomery_reduce(&t2, modulus, mp);
   /* Y = T2 - T1 */
   fp_sub(&t2, &t1, &y);
   if (fp_cmp_d(&y, 0) == FP_LT) {
      fp_add(&y, modulus, &y);
   }
   /* Y = Y/2 */
   if (fp_isodd(&y)) {
      fp_add(&y, modulus, &y);
   }
   fp_div_2(&y, &y);

   fp_copy(&x, R->x);
   fp_copy(&y, R->y);
   fp_copy(&z, R->z);

   return CRYPT_OK;
}


#endif

static int set_rand(void *a, int size)
{
   LTC_ARGCHK(a != NULL);
   fp_rand(a, size);
   return CRYPT_OK;
}

const ltc_math_descriptor tfm_desc = {

   "TomsFastMath",
   (int)DIGIT_BIT,

   &init,
   &init_copy,
   &deinit,

   &neg,
   &copy,

   &set_int,
   &get_int,
   &get_digit,
   &get_digit_count,
   &compare,
   &compare_d,
   &count_bits,
   &count_lsb_bits,
   &twoexpt,

   &read_radix,
   &write_radix,
   &unsigned_size,
   &unsigned_write,
   &unsigned_read,

   &add,
   &addi,
   &sub,
   &subi,
   &mul,
   &muli,
   &sqr,
   &divide,
   &div_2,
   &modi,
   &gcd,
   &lcm,

   &mulmod,
   &sqrmod,
   &invmod,

   &montgomery_setup,
   &montgomery_normalization,
   &montgomery_reduce,
   &montgomery_deinit,

   &exptmod,
   &isprime,

#ifdef LTC_MECC
#ifdef LTC_MECC_FP
   &ltc_ecc_fp_mulmod,
#else
   &ltc_ecc_mulmod,
#endif /* LTC_MECC_FP */
#ifdef LTC_MECC_ACCEL
   &tfm_ecc_projective_add_point,
   &tfm_ecc_projective_dbl_point,
#else
   &ltc_ecc_projective_add_point,
   &ltc_ecc_projective_dbl_point,
#endif /* LTC_MECC_ACCEL */
   &ltc_ecc_map,
#ifdef LTC_ECC_SHAMIR
#ifdef LTC_MECC_FP
   &ltc_ecc_fp_mul2add,
#else
   &ltc_ecc_mul2add,
#endif /* LTC_MECC_FP */
#else
   NULL,
#endif /* LTC_ECC_SHAMIR */
#else
   NULL, NULL, NULL, NULL, NULL,
#endif /* LTC_MECC */

#ifdef LTC_MRSA
   &rsa_make_key,
   &rsa_exptmod,
#else
   NULL, NULL,
#endif
   &addmod,
   &submod,

   set_rand,

};


#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */