view libtommath/bn_mp_gcd.c @ 1653:76189c9ffea2

External Public-Key Authentication API (#72) * Implemented dynamic loading of an external plug-in shared library to delegate public key authentication * Moved conditional compilation of the plugin infrastructure into the configure.ac script to be able to add -ldl to dropbear build only when the flag is enabled * Added tags file to the ignore list * Updated API to have the constructor to return function pointers in the pliugin instance. Added support for passing user name to the checkpubkey function. Added options to the session returned by the plugin and have dropbear to parse and process them * Added -rdynamic to the linker flags when EPKA is enabled * Changed the API to pass a previously created session to the checkPubKey function (created during preauth) * Added documentation to the API * Added parameter addrstring to plugin creation function * Modified the API to retrieve the auth options. Instead of having them as field of the EPKASession struct, they are stored internally (plugin-dependent) in the plugin/session and retrieved through a pointer to a function (in the session) * Changed option string to be a simple char * instead of unsigned char *
author fabriziobertocci <fabriziobertocci@gmail.com>
date Wed, 15 May 2019 09:43:57 -0400
parents 8bba51a55704
children f52919ffd3b1
line wrap: on
line source

#include <tommath_private.h>
#ifdef BN_MP_GCD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* Greatest Common Divisor using the binary method */
int mp_gcd (mp_int * a, mp_int * b, mp_int * c)
{
  mp_int  u, v;
  int     k, u_lsb, v_lsb, res;

  /* either zero than gcd is the largest */
  if (mp_iszero (a) == MP_YES) {
    return mp_abs (b, c);
  }
  if (mp_iszero (b) == MP_YES) {
    return mp_abs (a, c);
  }

  /* get copies of a and b we can modify */
  if ((res = mp_init_copy (&u, a)) != MP_OKAY) {
    return res;
  }

  if ((res = mp_init_copy (&v, b)) != MP_OKAY) {
    goto LBL_U;
  }

  /* must be positive for the remainder of the algorithm */
  u.sign = v.sign = MP_ZPOS;

  /* B1.  Find the common power of two for u and v */
  u_lsb = mp_cnt_lsb(&u);
  v_lsb = mp_cnt_lsb(&v);
  k     = MIN(u_lsb, v_lsb);

  if (k > 0) {
     /* divide the power of two out */
     if ((res = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) {
        goto LBL_V;
     }

     if ((res = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) {
        goto LBL_V;
     }
  }

  /* divide any remaining factors of two out */
  if (u_lsb != k) {
     if ((res = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) {
        goto LBL_V;
     }
  }

  if (v_lsb != k) {
     if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) {
        goto LBL_V;
     }
  }

  while (mp_iszero(&v) == MP_NO) {
     /* make sure v is the largest */
     if (mp_cmp_mag(&u, &v) == MP_GT) {
        /* swap u and v to make sure v is >= u */
        mp_exch(&u, &v);
     }
     
     /* subtract smallest from largest */
     if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) {
        goto LBL_V;
     }
     
     /* Divide out all factors of two */
     if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) {
        goto LBL_V;
     } 
  } 

  /* multiply by 2**k which we divided out at the beginning */
  if ((res = mp_mul_2d (&u, k, c)) != MP_OKAY) {
     goto LBL_V;
  }
  c->sign = MP_ZPOS;
  res = MP_OKAY;
LBL_V:mp_clear (&u);
LBL_U:mp_clear (&v);
  return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */