view libtommath/bn_mp_invmod_slow.c @ 1653:76189c9ffea2

External Public-Key Authentication API (#72) * Implemented dynamic loading of an external plug-in shared library to delegate public key authentication * Moved conditional compilation of the plugin infrastructure into the configure.ac script to be able to add -ldl to dropbear build only when the flag is enabled * Added tags file to the ignore list * Updated API to have the constructor to return function pointers in the pliugin instance. Added support for passing user name to the checkpubkey function. Added options to the session returned by the plugin and have dropbear to parse and process them * Added -rdynamic to the linker flags when EPKA is enabled * Changed the API to pass a previously created session to the checkPubKey function (created during preauth) * Added documentation to the API * Added parameter addrstring to plugin creation function * Modified the API to retrieve the auth options. Instead of having them as field of the EPKASession struct, they are stored internally (plugin-dependent) in the plugin/session and retrieved through a pointer to a function (in the session) * Changed option string to be a simple char * instead of unsigned char *
author fabriziobertocci <fabriziobertocci@gmail.com>
date Wed, 15 May 2019 09:43:57 -0400
parents 8bba51a55704
children f52919ffd3b1
line wrap: on
line source

#include <tommath_private.h>
#ifdef BN_MP_INVMOD_SLOW_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* hac 14.61, pp608 */
int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c)
{
  mp_int  x, y, u, v, A, B, C, D;
  int     res;

  /* b cannot be negative */
  if ((b->sign == MP_NEG) || (mp_iszero(b) == MP_YES)) {
    return MP_VAL;
  }

  /* init temps */
  if ((res = mp_init_multi(&x, &y, &u, &v, 
                           &A, &B, &C, &D, NULL)) != MP_OKAY) {
     return res;
  }

  /* x = a, y = b */
  if ((res = mp_mod(a, b, &x)) != MP_OKAY) {
      goto LBL_ERR;
  }
  if ((res = mp_copy (b, &y)) != MP_OKAY) {
    goto LBL_ERR;
  }

  /* 2. [modified] if x,y are both even then return an error! */
  if ((mp_iseven (&x) == MP_YES) && (mp_iseven (&y) == MP_YES)) {
    res = MP_VAL;
    goto LBL_ERR;
  }

  /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
  if ((res = mp_copy (&x, &u)) != MP_OKAY) {
    goto LBL_ERR;
  }
  if ((res = mp_copy (&y, &v)) != MP_OKAY) {
    goto LBL_ERR;
  }
  mp_set (&A, 1);
  mp_set (&D, 1);

top:
  /* 4.  while u is even do */
  while (mp_iseven (&u) == MP_YES) {
    /* 4.1 u = u/2 */
    if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
      goto LBL_ERR;
    }
    /* 4.2 if A or B is odd then */
    if ((mp_isodd (&A) == MP_YES) || (mp_isodd (&B) == MP_YES)) {
      /* A = (A+y)/2, B = (B-x)/2 */
      if ((res = mp_add (&A, &y, &A)) != MP_OKAY) {
         goto LBL_ERR;
      }
      if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
         goto LBL_ERR;
      }
    }
    /* A = A/2, B = B/2 */
    if ((res = mp_div_2 (&A, &A)) != MP_OKAY) {
      goto LBL_ERR;
    }
    if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
      goto LBL_ERR;
    }
  }

  /* 5.  while v is even do */
  while (mp_iseven (&v) == MP_YES) {
    /* 5.1 v = v/2 */
    if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
      goto LBL_ERR;
    }
    /* 5.2 if C or D is odd then */
    if ((mp_isodd (&C) == MP_YES) || (mp_isodd (&D) == MP_YES)) {
      /* C = (C+y)/2, D = (D-x)/2 */
      if ((res = mp_add (&C, &y, &C)) != MP_OKAY) {
         goto LBL_ERR;
      }
      if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
         goto LBL_ERR;
      }
    }
    /* C = C/2, D = D/2 */
    if ((res = mp_div_2 (&C, &C)) != MP_OKAY) {
      goto LBL_ERR;
    }
    if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
      goto LBL_ERR;
    }
  }

  /* 6.  if u >= v then */
  if (mp_cmp (&u, &v) != MP_LT) {
    /* u = u - v, A = A - C, B = B - D */
    if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
      goto LBL_ERR;
    }

    if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) {
      goto LBL_ERR;
    }

    if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
      goto LBL_ERR;
    }
  } else {
    /* v - v - u, C = C - A, D = D - B */
    if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
      goto LBL_ERR;
    }

    if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) {
      goto LBL_ERR;
    }

    if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
      goto LBL_ERR;
    }
  }

  /* if not zero goto step 4 */
  if (mp_iszero (&u) == MP_NO)
    goto top;

  /* now a = C, b = D, gcd == g*v */

  /* if v != 1 then there is no inverse */
  if (mp_cmp_d (&v, 1) != MP_EQ) {
    res = MP_VAL;
    goto LBL_ERR;
  }

  /* if its too low */
  while (mp_cmp_d(&C, 0) == MP_LT) {
      if ((res = mp_add(&C, b, &C)) != MP_OKAY) {
         goto LBL_ERR;
      }
  }
  
  /* too big */
  while (mp_cmp_mag(&C, b) != MP_LT) {
      if ((res = mp_sub(&C, b, &C)) != MP_OKAY) {
         goto LBL_ERR;
      }
  }
  
  /* C is now the inverse */
  mp_exch (&C, c);
  res = MP_OKAY;
LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL);
  return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */