view libtommath/bn_mp_toom_mul.c @ 1653:76189c9ffea2

External Public-Key Authentication API (#72) * Implemented dynamic loading of an external plug-in shared library to delegate public key authentication * Moved conditional compilation of the plugin infrastructure into the configure.ac script to be able to add -ldl to dropbear build only when the flag is enabled * Added tags file to the ignore list * Updated API to have the constructor to return function pointers in the pliugin instance. Added support for passing user name to the checkpubkey function. Added options to the session returned by the plugin and have dropbear to parse and process them * Added -rdynamic to the linker flags when EPKA is enabled * Changed the API to pass a previously created session to the checkPubKey function (created during preauth) * Added documentation to the API * Added parameter addrstring to plugin creation function * Modified the API to retrieve the auth options. Instead of having them as field of the EPKASession struct, they are stored internally (plugin-dependent) in the plugin/session and retrieved through a pointer to a function (in the session) * Changed option string to be a simple char * instead of unsigned char *
author fabriziobertocci <fabriziobertocci@gmail.com>
date Wed, 15 May 2019 09:43:57 -0400
parents 8bba51a55704
children f52919ffd3b1
line wrap: on
line source

#include <tommath_private.h>
#ifdef BN_MP_TOOM_MUL_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* multiplication using the Toom-Cook 3-way algorithm
 *
 * Much more complicated than Karatsuba but has a lower
 * asymptotic running time of O(N**1.464).  This algorithm is
 * only particularly useful on VERY large inputs
 * (we're talking 1000s of digits here...).
*/
int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c)
{
    mp_int w0, w1, w2, w3, w4, tmp1, tmp2, a0, a1, a2, b0, b1, b2;
    int res, B;

    /* init temps */
    if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4,
                             &a0, &a1, &a2, &b0, &b1,
                             &b2, &tmp1, &tmp2, NULL)) != MP_OKAY) {
       return res;
    }

    /* B */
    B = MIN(a->used, b->used) / 3;

    /* a = a2 * B**2 + a1 * B + a0 */
    if ((res = mp_mod_2d(a, DIGIT_BIT * B, &a0)) != MP_OKAY) {
       goto ERR;
    }

    if ((res = mp_copy(a, &a1)) != MP_OKAY) {
       goto ERR;
    }
    mp_rshd(&a1, B);
    if ((res = mp_mod_2d(&a1, DIGIT_BIT * B, &a1)) != MP_OKAY) {
       goto ERR;
    }

    if ((res = mp_copy(a, &a2)) != MP_OKAY) {
       goto ERR;
    }
    mp_rshd(&a2, B*2);

    /* b = b2 * B**2 + b1 * B + b0 */
    if ((res = mp_mod_2d(b, DIGIT_BIT * B, &b0)) != MP_OKAY) {
       goto ERR;
    }

    if ((res = mp_copy(b, &b1)) != MP_OKAY) {
       goto ERR;
    }
    mp_rshd(&b1, B);
    (void)mp_mod_2d(&b1, DIGIT_BIT * B, &b1);

    if ((res = mp_copy(b, &b2)) != MP_OKAY) {
       goto ERR;
    }
    mp_rshd(&b2, B*2);

    /* w0 = a0*b0 */
    if ((res = mp_mul(&a0, &b0, &w0)) != MP_OKAY) {
       goto ERR;
    }

    /* w4 = a2 * b2 */
    if ((res = mp_mul(&a2, &b2, &w4)) != MP_OKAY) {
       goto ERR;
    }

    /* w1 = (a2 + 2(a1 + 2a0))(b2 + 2(b1 + 2b0)) */
    if ((res = mp_mul_2(&a0, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&tmp1, &a2, &tmp1)) != MP_OKAY) {
       goto ERR;
    }

    if ((res = mp_mul_2(&b0, &tmp2)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&tmp2, &b1, &tmp2)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_mul_2(&tmp2, &tmp2)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&tmp2, &b2, &tmp2)) != MP_OKAY) {
       goto ERR;
    }

    if ((res = mp_mul(&tmp1, &tmp2, &w1)) != MP_OKAY) {
       goto ERR;
    }

    /* w3 = (a0 + 2(a1 + 2a2))(b0 + 2(b1 + 2b2)) */
    if ((res = mp_mul_2(&a2, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
       goto ERR;
    }

    if ((res = mp_mul_2(&b2, &tmp2)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&tmp2, &b1, &tmp2)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_mul_2(&tmp2, &tmp2)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) {
       goto ERR;
    }

    if ((res = mp_mul(&tmp1, &tmp2, &w3)) != MP_OKAY) {
       goto ERR;
    }


    /* w2 = (a2 + a1 + a0)(b2 + b1 + b0) */
    if ((res = mp_add(&a2, &a1, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&b2, &b1, &tmp2)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_mul(&tmp1, &tmp2, &w2)) != MP_OKAY) {
       goto ERR;
    }

    /* now solve the matrix

       0  0  0  0  1
       1  2  4  8  16
       1  1  1  1  1
       16 8  4  2  1
       1  0  0  0  0

       using 12 subtractions, 4 shifts,
              2 small divisions and 1 small multiplication
     */

    /* r1 - r4 */
    if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) {
       goto ERR;
    }
    /* r3 - r0 */
    if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) {
       goto ERR;
    }
    /* r1/2 */
    if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) {
       goto ERR;
    }
    /* r3/2 */
    if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) {
       goto ERR;
    }
    /* r2 - r0 - r4 */
    if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) {
       goto ERR;
    }
    /* r1 - r2 */
    if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
       goto ERR;
    }
    /* r3 - r2 */
    if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
       goto ERR;
    }
    /* r1 - 8r0 */
    if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) {
       goto ERR;
    }
    /* r3 - 8r4 */
    if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) {
       goto ERR;
    }
    /* 3r2 - r1 - r3 */
    if ((res = mp_mul_d(&w2, 3, &w2)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) {
       goto ERR;
    }
    /* r1 - r2 */
    if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
       goto ERR;
    }
    /* r3 - r2 */
    if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
       goto ERR;
    }
    /* r1/3 */
    if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) {
       goto ERR;
    }
    /* r3/3 */
    if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) {
       goto ERR;
    }

    /* at this point shift W[n] by B*n */
    if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_lshd(&w2, 2*B)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_lshd(&w3, 3*B)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) {
       goto ERR;
    }

    if ((res = mp_add(&w0, &w1, c)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&w2, &w3, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&w4, &tmp1, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&tmp1, c, c)) != MP_OKAY) {
       goto ERR;
    }

ERR:
    mp_clear_multi(&w0, &w1, &w2, &w3, &w4,
                   &a0, &a1, &a2, &b0, &b1,
                   &b2, &tmp1, &tmp2, NULL);
    return res;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */