Mercurial > dropbear
view libtommath/etc/pprime.c @ 1265:81ae6ed4e2f4
use #ifdef like everywhere
author | Francois Perrad <francois.perrad@gadz.org> |
---|---|
date | Thu, 31 Dec 2015 17:22:58 +0100 |
parents | 5ff8218bcee9 |
children | 60fc6476e044 |
line wrap: on
line source
/* Generates provable primes * * See http://gmail.com:8080/papers/pp.pdf for more info. * * Tom St Denis, [email protected], http://tom.gmail.com */ #include <time.h> #include "tommath.h" int n_prime; FILE *primes; /* fast square root */ static mp_digit i_sqrt (mp_word x) { mp_word x1, x2; x2 = x; do { x1 = x2; x2 = x1 - ((x1 * x1) - x) / (2 * x1); } while (x1 != x2); if (x1 * x1 > x) { --x1; } return x1; } /* generates a prime digit */ static void gen_prime (void) { mp_digit r, x, y, next; FILE *out; out = fopen("pprime.dat", "wb"); /* write first set of primes */ r = 3; fwrite(&r, 1, sizeof(mp_digit), out); r = 5; fwrite(&r, 1, sizeof(mp_digit), out); r = 7; fwrite(&r, 1, sizeof(mp_digit), out); r = 11; fwrite(&r, 1, sizeof(mp_digit), out); r = 13; fwrite(&r, 1, sizeof(mp_digit), out); r = 17; fwrite(&r, 1, sizeof(mp_digit), out); r = 19; fwrite(&r, 1, sizeof(mp_digit), out); r = 23; fwrite(&r, 1, sizeof(mp_digit), out); r = 29; fwrite(&r, 1, sizeof(mp_digit), out); r = 31; fwrite(&r, 1, sizeof(mp_digit), out); /* get square root, since if 'r' is composite its factors must be < than this */ y = i_sqrt (r); next = (y + 1) * (y + 1); for (;;) { do { r += 2; /* next candidate */ r &= MP_MASK; if (r < 31) break; /* update sqrt ? */ if (next <= r) { ++y; next = (y + 1) * (y + 1); } /* loop if divisible by 3,5,7,11,13,17,19,23,29 */ if ((r % 3) == 0) { x = 0; continue; } if ((r % 5) == 0) { x = 0; continue; } if ((r % 7) == 0) { x = 0; continue; } if ((r % 11) == 0) { x = 0; continue; } if ((r % 13) == 0) { x = 0; continue; } if ((r % 17) == 0) { x = 0; continue; } if ((r % 19) == 0) { x = 0; continue; } if ((r % 23) == 0) { x = 0; continue; } if ((r % 29) == 0) { x = 0; continue; } /* now check if r is divisible by x + k={1,7,11,13,17,19,23,29} */ for (x = 30; x <= y; x += 30) { if ((r % (x + 1)) == 0) { x = 0; break; } if ((r % (x + 7)) == 0) { x = 0; break; } if ((r % (x + 11)) == 0) { x = 0; break; } if ((r % (x + 13)) == 0) { x = 0; break; } if ((r % (x + 17)) == 0) { x = 0; break; } if ((r % (x + 19)) == 0) { x = 0; break; } if ((r % (x + 23)) == 0) { x = 0; break; } if ((r % (x + 29)) == 0) { x = 0; break; } } } while (x == 0); if (r > 31) { fwrite(&r, 1, sizeof(mp_digit), out); printf("%9d\r", r); fflush(stdout); } if (r < 31) break; } fclose(out); } void load_tab(void) { primes = fopen("pprime.dat", "rb"); if (primes == NULL) { gen_prime(); primes = fopen("pprime.dat", "rb"); } fseek(primes, 0, SEEK_END); n_prime = ftell(primes) / sizeof(mp_digit); } mp_digit prime_digit(void) { int n; mp_digit d; n = abs(rand()) % n_prime; fseek(primes, n * sizeof(mp_digit), SEEK_SET); fread(&d, 1, sizeof(mp_digit), primes); return d; } /* makes a prime of at least k bits */ int pprime (int k, int li, mp_int * p, mp_int * q) { mp_int a, b, c, n, x, y, z, v; int res, ii; static const mp_digit bases[] = { 2, 3, 5, 7, 11, 13, 17, 19 }; /* single digit ? */ if (k <= (int) DIGIT_BIT) { mp_set (p, prime_digit ()); return MP_OKAY; } if ((res = mp_init (&c)) != MP_OKAY) { return res; } if ((res = mp_init (&v)) != MP_OKAY) { goto LBL_C; } /* product of first 50 primes */ if ((res = mp_read_radix (&v, "19078266889580195013601891820992757757219839668357012055907516904309700014933909014729740190", 10)) != MP_OKAY) { goto LBL_V; } if ((res = mp_init (&a)) != MP_OKAY) { goto LBL_V; } /* set the prime */ mp_set (&a, prime_digit ()); if ((res = mp_init (&b)) != MP_OKAY) { goto LBL_A; } if ((res = mp_init (&n)) != MP_OKAY) { goto LBL_B; } if ((res = mp_init (&x)) != MP_OKAY) { goto LBL_N; } if ((res = mp_init (&y)) != MP_OKAY) { goto LBL_X; } if ((res = mp_init (&z)) != MP_OKAY) { goto LBL_Y; } /* now loop making the single digit */ while (mp_count_bits (&a) < k) { fprintf (stderr, "prime has %4d bits left\r", k - mp_count_bits (&a)); fflush (stderr); top: mp_set (&b, prime_digit ()); /* now compute z = a * b * 2 */ if ((res = mp_mul (&a, &b, &z)) != MP_OKAY) { /* z = a * b */ goto LBL_Z; } if ((res = mp_copy (&z, &c)) != MP_OKAY) { /* c = a * b */ goto LBL_Z; } if ((res = mp_mul_2 (&z, &z)) != MP_OKAY) { /* z = 2 * a * b */ goto LBL_Z; } /* n = z + 1 */ if ((res = mp_add_d (&z, 1, &n)) != MP_OKAY) { /* n = z + 1 */ goto LBL_Z; } /* check (n, v) == 1 */ if ((res = mp_gcd (&n, &v, &y)) != MP_OKAY) { /* y = (n, v) */ goto LBL_Z; } if (mp_cmp_d (&y, 1) != MP_EQ) goto top; /* now try base x=bases[ii] */ for (ii = 0; ii < li; ii++) { mp_set (&x, bases[ii]); /* compute x^a mod n */ if ((res = mp_exptmod (&x, &a, &n, &y)) != MP_OKAY) { /* y = x^a mod n */ goto LBL_Z; } /* if y == 1 loop */ if (mp_cmp_d (&y, 1) == MP_EQ) continue; /* now x^2a mod n */ if ((res = mp_sqrmod (&y, &n, &y)) != MP_OKAY) { /* y = x^2a mod n */ goto LBL_Z; } if (mp_cmp_d (&y, 1) == MP_EQ) continue; /* compute x^b mod n */ if ((res = mp_exptmod (&x, &b, &n, &y)) != MP_OKAY) { /* y = x^b mod n */ goto LBL_Z; } /* if y == 1 loop */ if (mp_cmp_d (&y, 1) == MP_EQ) continue; /* now x^2b mod n */ if ((res = mp_sqrmod (&y, &n, &y)) != MP_OKAY) { /* y = x^2b mod n */ goto LBL_Z; } if (mp_cmp_d (&y, 1) == MP_EQ) continue; /* compute x^c mod n == x^ab mod n */ if ((res = mp_exptmod (&x, &c, &n, &y)) != MP_OKAY) { /* y = x^ab mod n */ goto LBL_Z; } /* if y == 1 loop */ if (mp_cmp_d (&y, 1) == MP_EQ) continue; /* now compute (x^c mod n)^2 */ if ((res = mp_sqrmod (&y, &n, &y)) != MP_OKAY) { /* y = x^2ab mod n */ goto LBL_Z; } /* y should be 1 */ if (mp_cmp_d (&y, 1) != MP_EQ) continue; break; } /* no bases worked? */ if (ii == li) goto top; { char buf[4096]; mp_toradix(&n, buf, 10); printf("Certificate of primality for:\n%s\n\n", buf); mp_toradix(&a, buf, 10); printf("A == \n%s\n\n", buf); mp_toradix(&b, buf, 10); printf("B == \n%s\n\nG == %d\n", buf, bases[ii]); printf("----------------------------------------------------------------\n"); } /* a = n */ mp_copy (&n, &a); } /* get q to be the order of the large prime subgroup */ mp_sub_d (&n, 1, q); mp_div_2 (q, q); mp_div (q, &b, q, NULL); mp_exch (&n, p); res = MP_OKAY; LBL_Z:mp_clear (&z); LBL_Y:mp_clear (&y); LBL_X:mp_clear (&x); LBL_N:mp_clear (&n); LBL_B:mp_clear (&b); LBL_A:mp_clear (&a); LBL_V:mp_clear (&v); LBL_C:mp_clear (&c); return res; } int main (void) { mp_int p, q; char buf[4096]; int k, li; clock_t t1; srand (time (NULL)); load_tab(); printf ("Enter # of bits: \n"); fgets (buf, sizeof (buf), stdin); sscanf (buf, "%d", &k); printf ("Enter number of bases to try (1 to 8):\n"); fgets (buf, sizeof (buf), stdin); sscanf (buf, "%d", &li); mp_init (&p); mp_init (&q); t1 = clock (); pprime (k, li, &p, &q); t1 = clock () - t1; printf ("\n\nTook %ld ticks, %d bits\n", t1, mp_count_bits (&p)); mp_toradix (&p, buf, 10); printf ("P == %s\n", buf); mp_toradix (&q, buf, 10); printf ("Q == %s\n", buf); return 0; } /* $Source: /cvs/libtom/libtommath/etc/pprime.c,v $ */ /* $Revision: 1.3 $ */ /* $Date: 2006/03/31 14:18:47 $ */