Mercurial > dropbear
view libtommath/bn_fast_mp_invmod.c @ 322:84aa4e60bd3c
Look at HOME before /etc/passwd when looking for ~/.ssh/known_hosts
file, so people can workaround broken /etc/passwds. Print
the full path in error messages.
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Wed, 07 Jun 2006 13:41:19 +0000 |
parents | eed26cff980b |
children | 5ff8218bcee9 |
line wrap: on
line source
#include <tommath.h> #ifdef BN_FAST_MP_INVMOD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, [email protected], http://math.libtomcrypt.org */ /* computes the modular inverse via binary extended euclidean algorithm, * that is c = 1/a mod b * * Based on slow invmod except this is optimized for the case where b is * odd as per HAC Note 14.64 on pp. 610 */ int fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c) { mp_int x, y, u, v, B, D; int res, neg; /* 2. [modified] b must be odd */ if (mp_iseven (b) == 1) { return MP_VAL; } /* init all our temps */ if ((res = mp_init_multi(&x, &y, &u, &v, &B, &D, NULL)) != MP_OKAY) { return res; } /* x == modulus, y == value to invert */ if ((res = mp_copy (b, &x)) != MP_OKAY) { goto LBL_ERR; } /* we need y = |a| */ if ((res = mp_mod (a, b, &y)) != MP_OKAY) { goto LBL_ERR; } /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */ if ((res = mp_copy (&x, &u)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_copy (&y, &v)) != MP_OKAY) { goto LBL_ERR; } mp_set (&D, 1); top: /* 4. while u is even do */ while (mp_iseven (&u) == 1) { /* 4.1 u = u/2 */ if ((res = mp_div_2 (&u, &u)) != MP_OKAY) { goto LBL_ERR; } /* 4.2 if B is odd then */ if (mp_isodd (&B) == 1) { if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) { goto LBL_ERR; } } /* B = B/2 */ if ((res = mp_div_2 (&B, &B)) != MP_OKAY) { goto LBL_ERR; } } /* 5. while v is even do */ while (mp_iseven (&v) == 1) { /* 5.1 v = v/2 */ if ((res = mp_div_2 (&v, &v)) != MP_OKAY) { goto LBL_ERR; } /* 5.2 if D is odd then */ if (mp_isodd (&D) == 1) { /* D = (D-x)/2 */ if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) { goto LBL_ERR; } } /* D = D/2 */ if ((res = mp_div_2 (&D, &D)) != MP_OKAY) { goto LBL_ERR; } } /* 6. if u >= v then */ if (mp_cmp (&u, &v) != MP_LT) { /* u = u - v, B = B - D */ if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) { goto LBL_ERR; } } else { /* v - v - u, D = D - B */ if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) { goto LBL_ERR; } } /* if not zero goto step 4 */ if (mp_iszero (&u) == 0) { goto top; } /* now a = C, b = D, gcd == g*v */ /* if v != 1 then there is no inverse */ if (mp_cmp_d (&v, 1) != MP_EQ) { res = MP_VAL; goto LBL_ERR; } /* b is now the inverse */ neg = a->sign; while (D.sign == MP_NEG) { if ((res = mp_add (&D, b, &D)) != MP_OKAY) { goto LBL_ERR; } } mp_exch (&D, c); c->sign = neg; res = MP_OKAY; LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &B, &D, NULL); return res; } #endif