Mercurial > dropbear
view libtomcrypt/src/pk/ecc/ltc_ecc_mulmod.c @ 1833:870f6e386a0b
Partial strings from strtoul should return error
author | Matt Johnston <matt@codeconstruct.com.au> |
---|---|
date | Tue, 12 Oct 2021 23:31:09 +0800 |
parents | 6dba84798cd5 |
children |
line wrap: on
line source
/* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. */ /* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b * * All curves taken from NIST recommendation paper of July 1999 * Available at http://csrc.nist.gov/cryptval/dss.htm */ #include "tomcrypt.h" /** @file ltc_ecc_mulmod.c ECC Crypto, Tom St Denis */ #ifdef LTC_MECC #ifndef LTC_ECC_TIMING_RESISTANT /* size of sliding window, don't change this! */ #define WINSIZE 4 /** Perform a point multiplication @param k The scalar to multiply by @param G The base point @param R [out] Destination for kG @param modulus The modulus of the field the ECC curve is in @param map Boolean whether to map back to affine or not (1==map, 0 == leave in projective) @return CRYPT_OK on success */ int ltc_ecc_mulmod(void *k, ecc_point *G, ecc_point *R, void *modulus, int map) { ecc_point *tG, *M[8]; int i, j, err; void *mu, *mp; ltc_mp_digit buf; int first, bitbuf, bitcpy, bitcnt, mode, digidx; LTC_ARGCHK(k != NULL); LTC_ARGCHK(G != NULL); LTC_ARGCHK(R != NULL); LTC_ARGCHK(modulus != NULL); /* init montgomery reduction */ if ((err = mp_montgomery_setup(modulus, &mp)) != CRYPT_OK) { return err; } if ((err = mp_init(&mu)) != CRYPT_OK) { mp_montgomery_free(mp); return err; } if ((err = mp_montgomery_normalization(mu, modulus)) != CRYPT_OK) { mp_montgomery_free(mp); mp_clear(mu); return err; } /* alloc ram for window temps */ for (i = 0; i < 8; i++) { M[i] = ltc_ecc_new_point(); if (M[i] == NULL) { for (j = 0; j < i; j++) { ltc_ecc_del_point(M[j]); } mp_montgomery_free(mp); mp_clear(mu); return CRYPT_MEM; } } /* make a copy of G incase R==G */ tG = ltc_ecc_new_point(); if (tG == NULL) { err = CRYPT_MEM; goto done; } /* tG = G and convert to montgomery */ if (mp_cmp_d(mu, 1) == LTC_MP_EQ) { if ((err = mp_copy(G->x, tG->x)) != CRYPT_OK) { goto done; } if ((err = mp_copy(G->y, tG->y)) != CRYPT_OK) { goto done; } if ((err = mp_copy(G->z, tG->z)) != CRYPT_OK) { goto done; } } else { if ((err = mp_mulmod(G->x, mu, modulus, tG->x)) != CRYPT_OK) { goto done; } if ((err = mp_mulmod(G->y, mu, modulus, tG->y)) != CRYPT_OK) { goto done; } if ((err = mp_mulmod(G->z, mu, modulus, tG->z)) != CRYPT_OK) { goto done; } } mp_clear(mu); mu = NULL; /* calc the M tab, which holds kG for k==8..15 */ /* M[0] == 8G */ if ((err = ltc_mp.ecc_ptdbl(tG, M[0], modulus, mp)) != CRYPT_OK) { goto done; } if ((err = ltc_mp.ecc_ptdbl(M[0], M[0], modulus, mp)) != CRYPT_OK) { goto done; } if ((err = ltc_mp.ecc_ptdbl(M[0], M[0], modulus, mp)) != CRYPT_OK) { goto done; } /* now find (8+k)G for k=1..7 */ for (j = 9; j < 16; j++) { if ((err = ltc_mp.ecc_ptadd(M[j-9], tG, M[j-8], modulus, mp)) != CRYPT_OK) { goto done; } } /* setup sliding window */ mode = 0; bitcnt = 1; buf = 0; digidx = mp_get_digit_count(k) - 1; bitcpy = bitbuf = 0; first = 1; /* perform ops */ for (;;) { /* grab next digit as required */ if (--bitcnt == 0) { if (digidx == -1) { break; } buf = mp_get_digit(k, digidx); bitcnt = (int) ltc_mp.bits_per_digit; --digidx; } /* grab the next msb from the ltiplicand */ i = (buf >> (ltc_mp.bits_per_digit - 1)) & 1; buf <<= 1; /* skip leading zero bits */ if (mode == 0 && i == 0) { continue; } /* if the bit is zero and mode == 1 then we double */ if (mode == 1 && i == 0) { if ((err = ltc_mp.ecc_ptdbl(R, R, modulus, mp)) != CRYPT_OK) { goto done; } continue; } /* else we add it to the window */ bitbuf |= (i << (WINSIZE - ++bitcpy)); mode = 2; if (bitcpy == WINSIZE) { /* if this is the first window we do a simple copy */ if (first == 1) { /* R = kG [k = first window] */ if ((err = mp_copy(M[bitbuf-8]->x, R->x)) != CRYPT_OK) { goto done; } if ((err = mp_copy(M[bitbuf-8]->y, R->y)) != CRYPT_OK) { goto done; } if ((err = mp_copy(M[bitbuf-8]->z, R->z)) != CRYPT_OK) { goto done; } first = 0; } else { /* normal window */ /* ok window is filled so double as required and add */ /* double first */ for (j = 0; j < WINSIZE; j++) { if ((err = ltc_mp.ecc_ptdbl(R, R, modulus, mp)) != CRYPT_OK) { goto done; } } /* then add, bitbuf will be 8..15 [8..2^WINSIZE] guaranteed */ if ((err = ltc_mp.ecc_ptadd(R, M[bitbuf-8], R, modulus, mp)) != CRYPT_OK) { goto done; } } /* empty window and reset */ bitcpy = bitbuf = 0; mode = 1; } } /* if bits remain then double/add */ if (mode == 2 && bitcpy > 0) { /* double then add */ for (j = 0; j < bitcpy; j++) { /* only double if we have had at least one add first */ if (first == 0) { if ((err = ltc_mp.ecc_ptdbl(R, R, modulus, mp)) != CRYPT_OK) { goto done; } } bitbuf <<= 1; if ((bitbuf & (1 << WINSIZE)) != 0) { if (first == 1){ /* first add, so copy */ if ((err = mp_copy(tG->x, R->x)) != CRYPT_OK) { goto done; } if ((err = mp_copy(tG->y, R->y)) != CRYPT_OK) { goto done; } if ((err = mp_copy(tG->z, R->z)) != CRYPT_OK) { goto done; } first = 0; } else { /* then add */ if ((err = ltc_mp.ecc_ptadd(R, tG, R, modulus, mp)) != CRYPT_OK) { goto done; } } } } } /* map R back from projective space */ if (map) { err = ltc_ecc_map(R, modulus, mp); } else { err = CRYPT_OK; } done: if (mu != NULL) { mp_clear(mu); } mp_montgomery_free(mp); ltc_ecc_del_point(tG); for (i = 0; i < 8; i++) { ltc_ecc_del_point(M[i]); } return err; } #endif #undef WINSIZE #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */