Mercurial > dropbear
view libtomcrypt/src/ciphers/safer/safer.c @ 553:8711f20b89ab
- For uclinux, only cleanup on exit for the main process. This avoids
trashing the state when a failing child exits.
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Thu, 09 Jul 2009 16:01:30 +0000 |
parents | 0cbe8f6dbf9e |
children | f849a5ca2efc |
line wrap: on
line source
/* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, [email protected], http://libtomcrypt.com */ /******************************************************************************* * * FILE: safer.c * * DESCRIPTION: block-cipher algorithm SAFER (Secure And Fast Encryption * Routine) in its four versions: SAFER K-64, SAFER K-128, * SAFER SK-64 and SAFER SK-128. * * AUTHOR: Richard De Moliner ([email protected]) * Signal and Information Processing Laboratory * Swiss Federal Institute of Technology * CH-8092 Zuerich, Switzerland * * DATE: September 9, 1995 * * CHANGE HISTORY: * *******************************************************************************/ #include <tomcrypt.h> #ifdef SAFER const struct ltc_cipher_descriptor safer_k64_desc = { "safer-k64", 8, 8, 8, 8, SAFER_K64_DEFAULT_NOF_ROUNDS, &safer_k64_setup, &safer_ecb_encrypt, &safer_ecb_decrypt, &safer_k64_test, &safer_done, &safer_64_keysize, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL }, safer_sk64_desc = { "safer-sk64", 9, 8, 8, 8, SAFER_SK64_DEFAULT_NOF_ROUNDS, &safer_sk64_setup, &safer_ecb_encrypt, &safer_ecb_decrypt, &safer_sk64_test, &safer_done, &safer_64_keysize, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL }, safer_k128_desc = { "safer-k128", 10, 16, 16, 8, SAFER_K128_DEFAULT_NOF_ROUNDS, &safer_k128_setup, &safer_ecb_encrypt, &safer_ecb_decrypt, &safer_sk128_test, &safer_done, &safer_128_keysize, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL }, safer_sk128_desc = { "safer-sk128", 11, 16, 16, 8, SAFER_SK128_DEFAULT_NOF_ROUNDS, &safer_sk128_setup, &safer_ecb_encrypt, &safer_ecb_decrypt, &safer_sk128_test, &safer_done, &safer_128_keysize, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL }; /******************* Constants ************************************************/ /* #define TAB_LEN 256 */ /******************* Assertions ***********************************************/ /******************* Macros ***************************************************/ #define ROL8(x, n) ((unsigned char)((unsigned int)(x) << (n)\ |(unsigned int)((x) & 0xFF) >> (8 - (n)))) #define EXP(x) safer_ebox[(x) & 0xFF] #define LOG(x) safer_lbox[(x) & 0xFF] #define PHT(x, y) { y += x; x += y; } #define IPHT(x, y) { x -= y; y -= x; } /******************* Types ****************************************************/ extern const unsigned char safer_ebox[], safer_lbox[]; #ifdef LTC_CLEAN_STACK static void _Safer_Expand_Userkey(const unsigned char *userkey_1, const unsigned char *userkey_2, unsigned int nof_rounds, int strengthened, safer_key_t key) #else static void Safer_Expand_Userkey(const unsigned char *userkey_1, const unsigned char *userkey_2, unsigned int nof_rounds, int strengthened, safer_key_t key) #endif { unsigned int i, j, k; unsigned char ka[SAFER_BLOCK_LEN + 1]; unsigned char kb[SAFER_BLOCK_LEN + 1]; if (SAFER_MAX_NOF_ROUNDS < nof_rounds) nof_rounds = SAFER_MAX_NOF_ROUNDS; *key++ = (unsigned char)nof_rounds; ka[SAFER_BLOCK_LEN] = (unsigned char)0; kb[SAFER_BLOCK_LEN] = (unsigned char)0; k = 0; for (j = 0; j < SAFER_BLOCK_LEN; j++) { ka[j] = ROL8(userkey_1[j], 5); ka[SAFER_BLOCK_LEN] ^= ka[j]; kb[j] = *key++ = userkey_2[j]; kb[SAFER_BLOCK_LEN] ^= kb[j]; } for (i = 1; i <= nof_rounds; i++) { for (j = 0; j < SAFER_BLOCK_LEN + 1; j++) { ka[j] = ROL8(ka[j], 6); kb[j] = ROL8(kb[j], 6); } if (strengthened) { k = 2 * i - 1; while (k >= (SAFER_BLOCK_LEN + 1)) { k -= SAFER_BLOCK_LEN + 1; } } for (j = 0; j < SAFER_BLOCK_LEN; j++) { if (strengthened) { *key++ = (ka[k] + safer_ebox[(int)safer_ebox[(int)((18 * i + j + 1)&0xFF)]]) & 0xFF; if (++k == (SAFER_BLOCK_LEN + 1)) { k = 0; } } else { *key++ = (ka[j] + safer_ebox[(int)safer_ebox[(int)((18 * i + j + 1)&0xFF)]]) & 0xFF; } } if (strengthened) { k = 2 * i; while (k >= (SAFER_BLOCK_LEN + 1)) { k -= SAFER_BLOCK_LEN + 1; } } for (j = 0; j < SAFER_BLOCK_LEN; j++) { if (strengthened) { *key++ = (kb[k] + safer_ebox[(int)safer_ebox[(int)((18 * i + j + 10)&0xFF)]]) & 0xFF; if (++k == (SAFER_BLOCK_LEN + 1)) { k = 0; } } else { *key++ = (kb[j] + safer_ebox[(int)safer_ebox[(int)((18 * i + j + 10)&0xFF)]]) & 0xFF; } } } #ifdef LTC_CLEAN_STACK zeromem(ka, sizeof(ka)); zeromem(kb, sizeof(kb)); #endif } #ifdef LTC_CLEAN_STACK static void Safer_Expand_Userkey(const unsigned char *userkey_1, const unsigned char *userkey_2, unsigned int nof_rounds, int strengthened, safer_key_t key) { _Safer_Expand_Userkey(userkey_1, userkey_2, nof_rounds, strengthened, key); burn_stack(sizeof(unsigned char) * (2 * (SAFER_BLOCK_LEN + 1)) + sizeof(unsigned int)*2); } #endif int safer_k64_setup(const unsigned char *key, int keylen, int numrounds, symmetric_key *skey) { LTC_ARGCHK(key != NULL); LTC_ARGCHK(skey != NULL); if (numrounds != 0 && (numrounds < 6 || numrounds > SAFER_MAX_NOF_ROUNDS)) { return CRYPT_INVALID_ROUNDS; } if (keylen != 8) { return CRYPT_INVALID_KEYSIZE; } Safer_Expand_Userkey(key, key, (unsigned int)(numrounds != 0 ?numrounds:SAFER_K64_DEFAULT_NOF_ROUNDS), 0, skey->safer.key); return CRYPT_OK; } int safer_sk64_setup(const unsigned char *key, int keylen, int numrounds, symmetric_key *skey) { LTC_ARGCHK(key != NULL); LTC_ARGCHK(skey != NULL); if (numrounds != 0 && (numrounds < 6 || numrounds > SAFER_MAX_NOF_ROUNDS)) { return CRYPT_INVALID_ROUNDS; } if (keylen != 8) { return CRYPT_INVALID_KEYSIZE; } Safer_Expand_Userkey(key, key, (unsigned int)(numrounds != 0 ?numrounds:SAFER_SK64_DEFAULT_NOF_ROUNDS), 1, skey->safer.key); return CRYPT_OK; } int safer_k128_setup(const unsigned char *key, int keylen, int numrounds, symmetric_key *skey) { LTC_ARGCHK(key != NULL); LTC_ARGCHK(skey != NULL); if (numrounds != 0 && (numrounds < 6 || numrounds > SAFER_MAX_NOF_ROUNDS)) { return CRYPT_INVALID_ROUNDS; } if (keylen != 16) { return CRYPT_INVALID_KEYSIZE; } Safer_Expand_Userkey(key, key+8, (unsigned int)(numrounds != 0 ?numrounds:SAFER_K128_DEFAULT_NOF_ROUNDS), 0, skey->safer.key); return CRYPT_OK; } int safer_sk128_setup(const unsigned char *key, int keylen, int numrounds, symmetric_key *skey) { LTC_ARGCHK(key != NULL); LTC_ARGCHK(skey != NULL); if (numrounds != 0 && (numrounds < 6 || numrounds > SAFER_MAX_NOF_ROUNDS)) { return CRYPT_INVALID_ROUNDS; } if (keylen != 16) { return CRYPT_INVALID_KEYSIZE; } Safer_Expand_Userkey(key, key+8, (unsigned int)(numrounds != 0?numrounds:SAFER_SK128_DEFAULT_NOF_ROUNDS), 1, skey->safer.key); return CRYPT_OK; } #ifdef LTC_CLEAN_STACK static int _safer_ecb_encrypt(const unsigned char *block_in, unsigned char *block_out, symmetric_key *skey) #else int safer_ecb_encrypt(const unsigned char *block_in, unsigned char *block_out, symmetric_key *skey) #endif { unsigned char a, b, c, d, e, f, g, h, t; unsigned int round; unsigned char *key; LTC_ARGCHK(block_in != NULL); LTC_ARGCHK(block_out != NULL); LTC_ARGCHK(skey != NULL); key = skey->safer.key; a = block_in[0]; b = block_in[1]; c = block_in[2]; d = block_in[3]; e = block_in[4]; f = block_in[5]; g = block_in[6]; h = block_in[7]; if (SAFER_MAX_NOF_ROUNDS < (round = *key)) round = SAFER_MAX_NOF_ROUNDS; while(round-- > 0) { a ^= *++key; b += *++key; c += *++key; d ^= *++key; e ^= *++key; f += *++key; g += *++key; h ^= *++key; a = EXP(a) + *++key; b = LOG(b) ^ *++key; c = LOG(c) ^ *++key; d = EXP(d) + *++key; e = EXP(e) + *++key; f = LOG(f) ^ *++key; g = LOG(g) ^ *++key; h = EXP(h) + *++key; PHT(a, b); PHT(c, d); PHT(e, f); PHT(g, h); PHT(a, c); PHT(e, g); PHT(b, d); PHT(f, h); PHT(a, e); PHT(b, f); PHT(c, g); PHT(d, h); t = b; b = e; e = c; c = t; t = d; d = f; f = g; g = t; } a ^= *++key; b += *++key; c += *++key; d ^= *++key; e ^= *++key; f += *++key; g += *++key; h ^= *++key; block_out[0] = a & 0xFF; block_out[1] = b & 0xFF; block_out[2] = c & 0xFF; block_out[3] = d & 0xFF; block_out[4] = e & 0xFF; block_out[5] = f & 0xFF; block_out[6] = g & 0xFF; block_out[7] = h & 0xFF; return CRYPT_OK; } #ifdef LTC_CLEAN_STACK int safer_ecb_encrypt(const unsigned char *block_in, unsigned char *block_out, symmetric_key *skey) { int err = _safer_ecb_encrypt(block_in, block_out, skey); burn_stack(sizeof(unsigned char) * 9 + sizeof(unsigned int) + sizeof(unsigned char *)); return err; } #endif #ifdef LTC_CLEAN_STACK static int _safer_ecb_decrypt(const unsigned char *block_in, unsigned char *block_out, symmetric_key *skey) #else int safer_ecb_decrypt(const unsigned char *block_in, unsigned char *block_out, symmetric_key *skey) #endif { unsigned char a, b, c, d, e, f, g, h, t; unsigned int round; unsigned char *key; LTC_ARGCHK(block_in != NULL); LTC_ARGCHK(block_out != NULL); LTC_ARGCHK(skey != NULL); key = skey->safer.key; a = block_in[0]; b = block_in[1]; c = block_in[2]; d = block_in[3]; e = block_in[4]; f = block_in[5]; g = block_in[6]; h = block_in[7]; if (SAFER_MAX_NOF_ROUNDS < (round = *key)) round = SAFER_MAX_NOF_ROUNDS; key += SAFER_BLOCK_LEN * (1 + 2 * round); h ^= *key; g -= *--key; f -= *--key; e ^= *--key; d ^= *--key; c -= *--key; b -= *--key; a ^= *--key; while (round--) { t = e; e = b; b = c; c = t; t = f; f = d; d = g; g = t; IPHT(a, e); IPHT(b, f); IPHT(c, g); IPHT(d, h); IPHT(a, c); IPHT(e, g); IPHT(b, d); IPHT(f, h); IPHT(a, b); IPHT(c, d); IPHT(e, f); IPHT(g, h); h -= *--key; g ^= *--key; f ^= *--key; e -= *--key; d -= *--key; c ^= *--key; b ^= *--key; a -= *--key; h = LOG(h) ^ *--key; g = EXP(g) - *--key; f = EXP(f) - *--key; e = LOG(e) ^ *--key; d = LOG(d) ^ *--key; c = EXP(c) - *--key; b = EXP(b) - *--key; a = LOG(a) ^ *--key; } block_out[0] = a & 0xFF; block_out[1] = b & 0xFF; block_out[2] = c & 0xFF; block_out[3] = d & 0xFF; block_out[4] = e & 0xFF; block_out[5] = f & 0xFF; block_out[6] = g & 0xFF; block_out[7] = h & 0xFF; return CRYPT_OK; } #ifdef LTC_CLEAN_STACK int safer_ecb_decrypt(const unsigned char *block_in, unsigned char *block_out, symmetric_key *skey) { int err = _safer_ecb_decrypt(block_in, block_out, skey); burn_stack(sizeof(unsigned char) * 9 + sizeof(unsigned int) + sizeof(unsigned char *)); return err; } #endif int safer_64_keysize(int *keysize) { LTC_ARGCHK(keysize != NULL); if (*keysize < 8) { return CRYPT_INVALID_KEYSIZE; } else { *keysize = 8; return CRYPT_OK; } } int safer_128_keysize(int *keysize) { LTC_ARGCHK(keysize != NULL); if (*keysize < 16) { return CRYPT_INVALID_KEYSIZE; } else { *keysize = 16; return CRYPT_OK; } } int safer_k64_test(void) { #ifndef LTC_TEST return CRYPT_NOP; #else static const unsigned char k64_pt[] = { 1, 2, 3, 4, 5, 6, 7, 8 }, k64_key[] = { 8, 7, 6, 5, 4, 3, 2, 1 }, k64_ct[] = { 200, 242, 156, 221, 135, 120, 62, 217 }; symmetric_key skey; unsigned char buf[2][8]; int err; /* test K64 */ if ((err = safer_k64_setup(k64_key, 8, 6, &skey)) != CRYPT_OK) { return err; } safer_ecb_encrypt(k64_pt, buf[0], &skey); safer_ecb_decrypt(buf[0], buf[1], &skey); if (XMEMCMP(buf[0], k64_ct, 8) != 0 || XMEMCMP(buf[1], k64_pt, 8) != 0) { return CRYPT_FAIL_TESTVECTOR; } return CRYPT_OK; #endif } int safer_sk64_test(void) { #ifndef LTC_TEST return CRYPT_NOP; #else static const unsigned char sk64_pt[] = { 1, 2, 3, 4, 5, 6, 7, 8 }, sk64_key[] = { 1, 2, 3, 4, 5, 6, 7, 8 }, sk64_ct[] = { 95, 206, 155, 162, 5, 132, 56, 199 }; symmetric_key skey; unsigned char buf[2][8]; int err, y; /* test SK64 */ if ((err = safer_sk64_setup(sk64_key, 8, 6, &skey)) != CRYPT_OK) { return err; } safer_ecb_encrypt(sk64_pt, buf[0], &skey); safer_ecb_decrypt(buf[0], buf[1], &skey); if (XMEMCMP(buf[0], sk64_ct, 8) != 0 || XMEMCMP(buf[1], sk64_pt, 8) != 0) { return CRYPT_FAIL_TESTVECTOR; } /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */ for (y = 0; y < 8; y++) buf[0][y] = 0; for (y = 0; y < 1000; y++) safer_ecb_encrypt(buf[0], buf[0], &skey); for (y = 0; y < 1000; y++) safer_ecb_decrypt(buf[0], buf[0], &skey); for (y = 0; y < 8; y++) if (buf[0][y] != 0) return CRYPT_FAIL_TESTVECTOR; return CRYPT_OK; #endif } /** Terminate the context @param skey The scheduled key */ void safer_done(symmetric_key *skey) { } int safer_sk128_test(void) { #ifndef LTC_TEST return CRYPT_NOP; #else static const unsigned char sk128_pt[] = { 1, 2, 3, 4, 5, 6, 7, 8 }, sk128_key[] = { 1, 2, 3, 4, 5, 6, 7, 8, 0, 0, 0, 0, 0, 0, 0, 0 }, sk128_ct[] = { 255, 120, 17, 228, 179, 167, 46, 113 }; symmetric_key skey; unsigned char buf[2][8]; int err, y; /* test SK128 */ if ((err = safer_sk128_setup(sk128_key, 16, 0, &skey)) != CRYPT_OK) { return err; } safer_ecb_encrypt(sk128_pt, buf[0], &skey); safer_ecb_decrypt(buf[0], buf[1], &skey); if (XMEMCMP(buf[0], sk128_ct, 8) != 0 || XMEMCMP(buf[1], sk128_pt, 8) != 0) { return CRYPT_FAIL_TESTVECTOR; } /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */ for (y = 0; y < 8; y++) buf[0][y] = 0; for (y = 0; y < 1000; y++) safer_ecb_encrypt(buf[0], buf[0], &skey); for (y = 0; y < 1000; y++) safer_ecb_decrypt(buf[0], buf[0], &skey); for (y = 0; y < 8; y++) if (buf[0][y] != 0) return CRYPT_FAIL_TESTVECTOR; return CRYPT_OK; #endif } #endif /* $Source: /cvs/libtom/libtomcrypt/src/ciphers/safer/safer.c,v $ */ /* $Revision: 1.13 $ */ /* $Date: 2006/11/08 23:01:06 $ */