view libtommath/bn_mp_exptmod.c @ 1073:88043f9d40bd

Fix when iov queue is large
author Matt Johnston <matt@ucc.asn.au>
date Fri, 20 Mar 2015 23:33:45 +0800
parents 5ff8218bcee9
children 60fc6476e044
line wrap: on
line source

#include <tommath.h>
#ifdef BN_MP_EXPTMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://math.libtomcrypt.com
 */


/* this is a shell function that calls either the normal or Montgomery
 * exptmod functions.  Originally the call to the montgomery code was
 * embedded in the normal function but that wasted alot of stack space
 * for nothing (since 99% of the time the Montgomery code would be called)
 */
int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
{
  int dr;

  /* modulus P must be positive */
  if (P->sign == MP_NEG) {
     return MP_VAL;
  }

  /* if exponent X is negative we have to recurse */
  if (X->sign == MP_NEG) {
#ifdef BN_MP_INVMOD_C
     mp_int tmpG, tmpX;
     int err;

     /* first compute 1/G mod P */
     if ((err = mp_init(&tmpG)) != MP_OKAY) {
        return err;
     }
     if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) {
        mp_clear(&tmpG);
        return err;
     }

     /* now get |X| */
     if ((err = mp_init(&tmpX)) != MP_OKAY) {
        mp_clear(&tmpG);
        return err;
     }
     if ((err = mp_abs(X, &tmpX)) != MP_OKAY) {
        mp_clear_multi(&tmpG, &tmpX, NULL);
        return err;
     }

     /* and now compute (1/G)**|X| instead of G**X [X < 0] */
     err = mp_exptmod(&tmpG, &tmpX, P, Y);
     mp_clear_multi(&tmpG, &tmpX, NULL);
     return err;
#else 
     /* no invmod */
     return MP_VAL;
#endif
  }

/* modified diminished radix reduction */
#if defined(BN_MP_REDUCE_IS_2K_L_C) && defined(BN_MP_REDUCE_2K_L_C) && defined(BN_S_MP_EXPTMOD_C)
  if (mp_reduce_is_2k_l(P) == MP_YES) {
     return s_mp_exptmod(G, X, P, Y, 1);
  }
#endif

#ifdef BN_MP_DR_IS_MODULUS_C
  /* is it a DR modulus? */
  dr = mp_dr_is_modulus(P);
#else
  /* default to no */
  dr = 0;
#endif

#ifdef BN_MP_REDUCE_IS_2K_C
  /* if not, is it a unrestricted DR modulus? */
  if (dr == 0) {
     dr = mp_reduce_is_2k(P) << 1;
  }
#endif
    
  /* if the modulus is odd or dr != 0 use the montgomery method */
#ifdef BN_MP_EXPTMOD_FAST_C
  if (mp_isodd (P) == 1 || dr !=  0) {
    return mp_exptmod_fast (G, X, P, Y, dr);
  } else {
#endif
#ifdef BN_S_MP_EXPTMOD_C
    /* otherwise use the generic Barrett reduction technique */
    return s_mp_exptmod (G, X, P, Y, 0);
#else
    /* no exptmod for evens */
    return MP_VAL;
#endif
#ifdef BN_MP_EXPTMOD_FAST_C
  }
#endif
}

#endif

/* $Source: /cvs/libtom/libtommath/bn_mp_exptmod.c,v $ */
/* $Revision: 1.4 $ */
/* $Date: 2006/03/31 14:18:44 $ */