Mercurial > dropbear
view libtommath/poster.tex @ 986:8d0c33e8ddab coverity
merge
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Sun, 04 Jan 2015 22:33:12 +0800 |
parents | eed26cff980b |
children |
line wrap: on
line source
\documentclass[landscape,11pt]{article} \usepackage{amsmath, amssymb} \usepackage{hyperref} \begin{document} \hspace*{-3in} \begin{tabular}{llllll} $c = a + b$ & {\tt mp\_add(\&a, \&b, \&c)} & $b = 2a$ & {\tt mp\_mul\_2(\&a, \&b)} & \\ $c = a - b$ & {\tt mp\_sub(\&a, \&b, \&c)} & $b = a/2$ & {\tt mp\_div\_2(\&a, \&b)} & \\ $c = ab $ & {\tt mp\_mul(\&a, \&b, \&c)} & $c = 2^ba$ & {\tt mp\_mul\_2d(\&a, b, \&c)} \\ $b = a^2 $ & {\tt mp\_sqr(\&a, \&b)} & $c = a/2^b, d = a \mod 2^b$ & {\tt mp\_div\_2d(\&a, b, \&c, \&d)} \\ $c = \lfloor a/b \rfloor, d = a \mod b$ & {\tt mp\_div(\&a, \&b, \&c, \&d)} & $c = a \mod 2^b $ & {\tt mp\_mod\_2d(\&a, b, \&c)} \\ && \\ $a = b $ & {\tt mp\_set\_int(\&a, b)} & $c = a \vee b$ & {\tt mp\_or(\&a, \&b, \&c)} \\ $b = a $ & {\tt mp\_copy(\&a, \&b)} & $c = a \wedge b$ & {\tt mp\_and(\&a, \&b, \&c)} \\ && $c = a \oplus b$ & {\tt mp\_xor(\&a, \&b, \&c)} \\ & \\ $b = -a $ & {\tt mp\_neg(\&a, \&b)} & $d = a + b \mod c$ & {\tt mp\_addmod(\&a, \&b, \&c, \&d)} \\ $b = |a| $ & {\tt mp\_abs(\&a, \&b)} & $d = a - b \mod c$ & {\tt mp\_submod(\&a, \&b, \&c, \&d)} \\ && $d = ab \mod c$ & {\tt mp\_mulmod(\&a, \&b, \&c, \&d)} \\ Compare $a$ and $b$ & {\tt mp\_cmp(\&a, \&b)} & $c = a^2 \mod b$ & {\tt mp\_sqrmod(\&a, \&b, \&c)} \\ Is Zero? & {\tt mp\_iszero(\&a)} & $c = a^{-1} \mod b$ & {\tt mp\_invmod(\&a, \&b, \&c)} \\ Is Even? & {\tt mp\_iseven(\&a)} & $d = a^b \mod c$ & {\tt mp\_exptmod(\&a, \&b, \&c, \&d)} \\ Is Odd ? & {\tt mp\_isodd(\&a)} \\ &\\ $\vert \vert a \vert \vert$ & {\tt mp\_unsigned\_bin\_size(\&a)} & $res$ = 1 if $a$ prime to $t$ rounds? & {\tt mp\_prime\_is\_prime(\&a, t, \&res)} \\ $buf \leftarrow a$ & {\tt mp\_to\_unsigned\_bin(\&a, buf)} & Next prime after $a$ to $t$ rounds. & {\tt mp\_prime\_next\_prime(\&a, t, bbs\_style)} \\ $a \leftarrow buf[0..len-1]$ & {\tt mp\_read\_unsigned\_bin(\&a, buf, len)} \\ &\\ $b = \sqrt{a}$ & {\tt mp\_sqrt(\&a, \&b)} & $c = \mbox{gcd}(a, b)$ & {\tt mp\_gcd(\&a, \&b, \&c)} \\ $c = a^{1/b}$ & {\tt mp\_n\_root(\&a, b, \&c)} & $c = \mbox{lcm}(a, b)$ & {\tt mp\_lcm(\&a, \&b, \&c)} \\ &\\ Greater Than & MP\_GT & Equal To & MP\_EQ \\ Less Than & MP\_LT & Bits per digit & DIGIT\_BIT \\ \end{tabular} \end{document}