Mercurial > dropbear
view libtomcrypt/src/pk/dh/dh_sys.c @ 364:90cb290836de channel-fix
Passes most test cases now
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Mon, 09 Oct 2006 16:31:00 +0000 |
parents | 1b9e69c058d2 |
children |
line wrap: on
line source
/* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, [email protected], http://libtomcrypt.org */ /** @file dh_sys.c DH Crypto, Tom St Denis */ /** Encrypt a short symmetric key with a public DH key @param in The symmetric key to encrypt @param inlen The length of the key (octets) @param out [out] The ciphertext @param outlen [in/out] The max size and resulting size of the ciphertext @param prng An active PRNG state @param wprng The index of the PRNG desired @param hash The index of the hash desired (must produce a digest of size >= the size of the plaintext) @param key The public key you wish to encrypt with. @return CRYPT_OK if successful */ int dh_encrypt_key(const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen, prng_state *prng, int wprng, int hash, dh_key *key) { unsigned char *pub_expt, *dh_shared, *skey; dh_key pubkey; unsigned long x, y, z, hashsize, pubkeysize; int err; LTC_ARGCHK(in != NULL); LTC_ARGCHK(out != NULL); LTC_ARGCHK(outlen != NULL); LTC_ARGCHK(key != NULL); /* check that wprng/hash are not invalid */ if ((err = prng_is_valid(wprng)) != CRYPT_OK) { return err; } if ((err = hash_is_valid(hash)) != CRYPT_OK) { return err; } if (inlen > hash_descriptor[hash].hashsize) { return CRYPT_INVALID_HASH; } /* allocate memory */ pub_expt = XMALLOC(DH_BUF_SIZE); dh_shared = XMALLOC(DH_BUF_SIZE); skey = XMALLOC(MAXBLOCKSIZE); if (pub_expt == NULL || dh_shared == NULL || skey == NULL) { if (pub_expt != NULL) { XFREE(pub_expt); } if (dh_shared != NULL) { XFREE(dh_shared); } if (skey != NULL) { XFREE(skey); } return CRYPT_MEM; } /* make a random key and export the public copy */ if ((err = dh_make_key(prng, wprng, dh_get_size(key), &pubkey)) != CRYPT_OK) { goto LBL_ERR; } pubkeysize = DH_BUF_SIZE; if ((err = dh_export(pub_expt, &pubkeysize, PK_PUBLIC, &pubkey)) != CRYPT_OK) { dh_free(&pubkey); goto LBL_ERR; } /* now check if the out buffer is big enough */ if (*outlen < (1 + 4 + 4 + PACKET_SIZE + pubkeysize + inlen)) { dh_free(&pubkey); err = CRYPT_BUFFER_OVERFLOW; goto LBL_ERR; } /* make random key */ hashsize = hash_descriptor[hash].hashsize; x = DH_BUF_SIZE; if ((err = dh_shared_secret(&pubkey, key, dh_shared, &x)) != CRYPT_OK) { dh_free(&pubkey); goto LBL_ERR; } dh_free(&pubkey); z = MAXBLOCKSIZE; if ((err = hash_memory(hash, dh_shared, x, skey, &z)) != CRYPT_OK) { goto LBL_ERR; } /* store header */ packet_store_header(out, PACKET_SECT_DH, PACKET_SUB_ENC_KEY); /* output header */ y = PACKET_SIZE; /* size of hash name and the name itself */ out[y++] = hash_descriptor[hash].ID; /* length of DH pubkey and the key itself */ STORE32L(pubkeysize, out+y); y += 4; for (x = 0; x < pubkeysize; x++, y++) { out[y] = pub_expt[x]; } /* Store the encrypted key */ STORE32L(inlen, out+y); y += 4; for (x = 0; x < inlen; x++, y++) { out[y] = skey[x] ^ in[x]; } *outlen = y; err = CRYPT_OK; LBL_ERR: #ifdef LTC_CLEAN_STACK /* clean up */ zeromem(pub_expt, DH_BUF_SIZE); zeromem(dh_shared, DH_BUF_SIZE); zeromem(skey, MAXBLOCKSIZE); #endif XFREE(skey); XFREE(dh_shared); XFREE(pub_expt); return err; } /** Decrypt a DH encrypted symmetric key @param in The DH encrypted packet @param inlen The length of the DH encrypted packet @param out The plaintext @param outlen [in/out] The max size and resulting size of the plaintext @param key The private DH key corresponding to the public key that encrypted the plaintext @return CRYPT_OK if successful */ int dh_decrypt_key(const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen, dh_key *key) { unsigned char *shared_secret, *skey; unsigned long x, y, z, hashsize, keysize; int hash, err; dh_key pubkey; LTC_ARGCHK(in != NULL); LTC_ARGCHK(out != NULL); LTC_ARGCHK(outlen != NULL); LTC_ARGCHK(key != NULL); /* right key type? */ if (key->type != PK_PRIVATE) { return CRYPT_PK_NOT_PRIVATE; } /* allocate ram */ shared_secret = XMALLOC(DH_BUF_SIZE); skey = XMALLOC(MAXBLOCKSIZE); if (shared_secret == NULL || skey == NULL) { if (shared_secret != NULL) { XFREE(shared_secret); } if (skey != NULL) { XFREE(skey); } return CRYPT_MEM; } /* check if initial header should fit */ if (inlen < PACKET_SIZE+1+4+4) { err = CRYPT_INVALID_PACKET; goto LBL_ERR; } else { inlen -= PACKET_SIZE+1+4+4; } /* is header correct? */ if ((err = packet_valid_header((unsigned char *)in, PACKET_SECT_DH, PACKET_SUB_ENC_KEY)) != CRYPT_OK) { goto LBL_ERR; } /* now lets get the hash name */ y = PACKET_SIZE; hash = find_hash_id(in[y++]); if (hash == -1) { err = CRYPT_INVALID_HASH; goto LBL_ERR; } /* common values */ hashsize = hash_descriptor[hash].hashsize; /* get public key */ LOAD32L(x, in+y); /* now check if the imported key will fit */ if (inlen < x) { err = CRYPT_INVALID_PACKET; goto LBL_ERR; } else { inlen -= x; } y += 4; if ((err = dh_import(in+y, x, &pubkey)) != CRYPT_OK) { goto LBL_ERR; } y += x; /* make shared key */ x = DH_BUF_SIZE; if ((err = dh_shared_secret(key, &pubkey, shared_secret, &x)) != CRYPT_OK) { dh_free(&pubkey); goto LBL_ERR; } dh_free(&pubkey); z = MAXBLOCKSIZE; if ((err = hash_memory(hash, shared_secret, x, skey, &z)) != CRYPT_OK) { goto LBL_ERR; } /* load in the encrypted key */ LOAD32L(keysize, in+y); /* will the out fit as part of the input */ if (inlen < keysize) { err = CRYPT_INVALID_PACKET; goto LBL_ERR; } else { inlen -= keysize; } if (keysize > *outlen) { err = CRYPT_BUFFER_OVERFLOW; goto LBL_ERR; } y += 4; *outlen = keysize; for (x = 0; x < keysize; x++, y++) { out[x] = skey[x] ^ in[y]; } err = CRYPT_OK; LBL_ERR: #ifdef LTC_CLEAN_STACK zeromem(shared_secret, DH_BUF_SIZE); zeromem(skey, MAXBLOCKSIZE); #endif XFREE(skey); XFREE(shared_secret); return err; } /* perform an ElGamal Signature of a hash * * The math works as follows. x is the private key, M is the message to sign 1. pick a random k 2. compute a = g^k mod p 3. compute b = (M - xa)/k mod p 4. Send (a,b) Now to verify with y=g^x mod p, a and b 1. compute y^a * a^b = g^(xa) * g^(k*(M-xa)/k) = g^(xa + (M - xa)) = g^M [all mod p] 2. Compare against g^M mod p [based on input hash]. 3. If result of #2 == result of #1 then signature valid */ /** Sign a message digest using a DH private key @param in The data to sign @param inlen The length of the input (octets) @param out [out] The destination of the signature @param outlen [in/out] The max size and resulting size of the output @param prng An active PRNG state @param wprng The index of the PRNG desired @param key A private DH key @return CRYPT_OK if successful */ int dh_sign_hash(const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen, prng_state *prng, int wprng, dh_key *key) { mp_int a, b, k, m, g, p, p1, tmp; unsigned char *buf; unsigned long x, y; int err; LTC_ARGCHK(in != NULL); LTC_ARGCHK(out != NULL); LTC_ARGCHK(outlen != NULL); LTC_ARGCHK(key != NULL); /* check parameters */ if (key->type != PK_PRIVATE) { return CRYPT_PK_NOT_PRIVATE; } if ((err = prng_is_valid(wprng)) != CRYPT_OK) { return err; } /* is the IDX valid ? */ if (is_valid_idx(key->idx) != 1) { return CRYPT_PK_INVALID_TYPE; } /* allocate ram for buf */ buf = XMALLOC(520); /* make up a random value k, * since the order of the group is prime * we need not check if gcd(k, r) is 1 */ if (prng_descriptor[wprng].read(buf, sets[key->idx].size, prng) != (unsigned long)(sets[key->idx].size)) { err = CRYPT_ERROR_READPRNG; goto LBL_ERR; } /* init bignums */ if ((err = mp_init_multi(&a, &b, &k, &m, &p, &g, &p1, &tmp, NULL)) != MP_OKAY) { err = mpi_to_ltc_error(err); goto LBL_ERR; } /* load k and m */ if ((err = mp_read_unsigned_bin(&m, (unsigned char *)in, inlen)) != MP_OKAY) { goto error; } if ((err = mp_read_unsigned_bin(&k, buf, sets[key->idx].size)) != MP_OKAY) { goto error; } /* load g, p and p1 */ if ((err = mp_read_radix(&g, sets[key->idx].base, 64)) != MP_OKAY) { goto error; } if ((err = mp_read_radix(&p, sets[key->idx].prime, 64)) != MP_OKAY) { goto error; } if ((err = mp_sub_d(&p, 1, &p1)) != MP_OKAY) { goto error; } if ((err = mp_div_2(&p1, &p1)) != MP_OKAY) { goto error; } /* p1 = (p-1)/2 */ /* now get a = g^k mod p */ if ((err = mp_exptmod(&g, &k, &p, &a)) != MP_OKAY) { goto error; } /* now find M = xa + kb mod p1 or just b = (M - xa)/k mod p1 */ if ((err = mp_invmod(&k, &p1, &k)) != MP_OKAY) { goto error; } /* k = 1/k mod p1 */ if ((err = mp_mulmod(&a, &key->x, &p1, &tmp)) != MP_OKAY) { goto error; } /* tmp = xa */ if ((err = mp_submod(&m, &tmp, &p1, &tmp)) != MP_OKAY) { goto error; } /* tmp = M - xa */ if ((err = mp_mulmod(&k, &tmp, &p1, &b)) != MP_OKAY) { goto error; } /* b = (M - xa)/k */ /* check for overflow */ if ((unsigned long)(PACKET_SIZE + 4 + 4 + mp_unsigned_bin_size(&a) + mp_unsigned_bin_size(&b)) > *outlen) { err = CRYPT_BUFFER_OVERFLOW; goto LBL_ERR; } /* store header */ y = PACKET_SIZE; /* now store them both (a,b) */ x = (unsigned long)mp_unsigned_bin_size(&a); STORE32L(x, out+y); y += 4; if ((err = mp_to_unsigned_bin(&a, out+y)) != MP_OKAY) { goto error; } y += x; x = (unsigned long)mp_unsigned_bin_size(&b); STORE32L(x, out+y); y += 4; if ((err = mp_to_unsigned_bin(&b, out+y)) != MP_OKAY) { goto error; } y += x; /* check if size too big */ if (*outlen < y) { err = CRYPT_BUFFER_OVERFLOW; goto LBL_ERR; } /* store header */ packet_store_header(out, PACKET_SECT_DH, PACKET_SUB_SIGNED); *outlen = y; err = CRYPT_OK; goto LBL_ERR; error: err = mpi_to_ltc_error(err); LBL_ERR: mp_clear_multi(&tmp, &p1, &g, &p, &m, &k, &b, &a, NULL); XFREE(buf); return err; } /** Verify the signature given @param sig The signature @param siglen The length of the signature (octets) @param hash The hash that was signed @param hashlen The length of the hash (octets) @param stat [out] Result of signature comparison, 1==valid, 0==invalid @param key The public DH key that signed the hash @return CRYPT_OK if succsessful (even if signature is invalid) */ int dh_verify_hash(const unsigned char *sig, unsigned long siglen, const unsigned char *hash, unsigned long hashlen, int *stat, dh_key *key) { mp_int a, b, p, g, m, tmp; unsigned long x, y; int err; LTC_ARGCHK(sig != NULL); LTC_ARGCHK(hash != NULL); LTC_ARGCHK(stat != NULL); LTC_ARGCHK(key != NULL); /* default to invalid */ *stat = 0; /* check initial input length */ if (siglen < PACKET_SIZE+4+4) { return CRYPT_INVALID_PACKET; } /* header ok? */ if ((err = packet_valid_header((unsigned char *)sig, PACKET_SECT_DH, PACKET_SUB_SIGNED)) != CRYPT_OK) { return err; } /* get hash out of packet */ y = PACKET_SIZE; /* init all bignums */ if ((err = mp_init_multi(&a, &p, &b, &g, &m, &tmp, NULL)) != MP_OKAY) { return mpi_to_ltc_error(err); } /* load a and b */ INPUT_BIGNUM(&a, sig, x, y, siglen); INPUT_BIGNUM(&b, sig, x, y, siglen); /* load p and g */ if ((err = mp_read_radix(&p, sets[key->idx].prime, 64)) != MP_OKAY) { goto error1; } if ((err = mp_read_radix(&g, sets[key->idx].base, 64)) != MP_OKAY) { goto error1; } /* load m */ if ((err = mp_read_unsigned_bin(&m, (unsigned char *)hash, hashlen)) != MP_OKAY) { goto error1; } /* find g^m mod p */ if ((err = mp_exptmod(&g, &m, &p, &m)) != MP_OKAY) { goto error1; } /* m = g^m mod p */ /* find y^a * a^b */ if ((err = mp_exptmod(&key->y, &a, &p, &tmp)) != MP_OKAY) { goto error1; } /* tmp = y^a mod p */ if ((err = mp_exptmod(&a, &b, &p, &a)) != MP_OKAY) { goto error1; } /* a = a^b mod p */ if ((err = mp_mulmod(&a, &tmp, &p, &a)) != MP_OKAY) { goto error1; } /* a = y^a * a^b mod p */ /* y^a * a^b == g^m ??? */ if (mp_cmp(&a, &m) == 0) { *stat = 1; } /* clean up */ err = CRYPT_OK; goto done; error1: err = mpi_to_ltc_error(err); error: done: mp_clear_multi(&tmp, &m, &g, &p, &b, &a, NULL); return err; } /* $Source: /cvs/libtom/libtomcrypt/src/pk/dh/dh_sys.c,v $ */ /* $Revision: 1.3 $ */ /* $Date: 2005/05/05 14:35:59 $ */