Mercurial > dropbear
view libtomcrypt/src/pk/ecc/ecc.c @ 364:90cb290836de channel-fix
Passes most test cases now
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Mon, 09 Oct 2006 16:31:00 +0000 |
parents | 1b9e69c058d2 |
children | 0cbe8f6dbf9e |
line wrap: on
line source
/* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, [email protected], http://libtomcrypt.org */ /* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b * * All curves taken from NIST recommendation paper of July 1999 * Available at http://csrc.nist.gov/cryptval/dss.htm */ #include "tomcrypt.h" /** @file ecc.c ECC Crypto, Tom St Denis */ #ifdef MECC /* size of our temp buffers for exported keys */ #define ECC_BUF_SIZE 256 /* max private key size */ #define ECC_MAXSIZE 66 /* This holds the key settings. ***MUST*** be organized by size from smallest to largest. */ static const struct { int size; char *name, *prime, *B, *order, *Gx, *Gy; } sets[] = { #ifdef ECC192 { 24, "ECC-192", /* prime */ "/////////////////////l//////////", /* B */ "P2456UMSWESFf+chSYGmIVwutkp1Hhcn", /* order */ "////////////////cTxuDXHhoR6qqYWn", /* Gx */ "68se3h0maFPylo3hGw680FJ/2ls2/n0I", /* Gy */ "1nahbV/8sdXZ417jQoJDrNFvTw4UUKWH" }, #endif #ifdef ECC224 { 28, "ECC-224", /* prime */ "3/////////////////////0000000000000001", /* B */ "2q1Gg530Ipg/L1CbPGHB2trx/OkYSBEKCZLV+q", /* order */ "3//////////////////nQYuBZmFXFTAKLSN2ez", /* Gx */ "2t3WozQxI/Vp8JaBbA0y7JLi8H8ZGoWDOHN1qX", /* Gy */ "2zDsE8jVSZ+qmYt+RDGtMWMWT7P4JLWPc507uq", }, #endif #ifdef ECC256 { 32, "ECC-256", /* Prime */ "F////y000010000000000000000////////////////", /* B */ "5h6DTYgEfFdi+kzLNQOXhnb7GQmp5EmzZlEF3udqc1B", /* Order */ "F////y00000//////////+yvlgjfnUUXFEvoiByOoLH", /* Gx */ "6iNqVBXB497+BpcvMEaGF9t0ts1BUipeFIXEKNOcCAM", /* Gy */ "4/ZGkB+6d+RZkVhIdmFdXOhpZDNQp5UpiksG6Wtlr7r" }, #endif #ifdef ECC384 { 48, "ECC-384", /* prime */ "//////////////////////////////////////////x/////00000000003/" "////", /* B */ "ip4lf+8+v+IOZWLhu/Wj6HWTd6x+WK4I0nG8Zr0JXrh6LZcDYYxHdIg5oEtJ" "x2hl", /* Order */ "////////////////////////////////nsDDWVGtBTzO6WsoIB2dUkpi6MhC" "nIbp", /* Gx and Gy */ "geVA8hwB1JUEiSSUyo2jT6uTEsABfvkOMVT1u89KAZXL0l9TlrKfR3fKNZXo" "TWgt", "DXVUIfOcB6zTdfY/afBSAVZq7RqecXHywTen4xNmkC0AOB7E7Nw1dNf37NoG" "wWvV" }, #endif #ifdef ECC521 { 65, "ECC-521", /* prime */ "V///////////////////////////////////////////////////////////" "///////////////////////////", /* B */ "56LFhbXZXoQ7vAQ8Q2sXK3kejfoMvcp5VEuj8cHZl49uLOPEL7iVfDx5bB0l" "JknlmSrSz+8FImqyUz57zHhK3y0", /* Order */ "V//////////////////////////////////////////+b66XuE/BvPhVym1I" "FS9fT0xjScuYPn7hhjljnwHE6G9", /* Gx and Gy */ "CQ5ZWQt10JfpPu+osOZbRH2d6I1EGK/jI7uAAzWQqqzkg5BNdVlvrae/Xt19" "wB/gDupIBF1XMf2c/b+VZ72vRrc", "HWvAMfucZl015oANxGiVHlPcFL4ILURH6WNhxqN9pvcB9VkSfbUz2P0nL2v0" "J+j1s4rF726edB2G8Y+b7QVqMPG", }, #endif { 0, NULL, NULL, NULL, NULL, NULL, NULL } }; static int is_valid_idx(int n) { int x; for (x = 0; sets[x].size != 0; x++); if ((n < 0) || (n >= x)) { return 0; } return 1; } static ecc_point *new_point(void) { ecc_point *p; p = XMALLOC(sizeof(ecc_point)); if (p == NULL) { return NULL; } if (mp_init_multi(&p->x, &p->y, &p->z, NULL) != MP_OKAY) { XFREE(p); return NULL; } return p; } static void del_point(ecc_point *p) { /* prevents free'ing null arguments */ if (p != NULL) { mp_clear_multi(&p->x, &p->y, &p->z, NULL); XFREE(p); } } static int ecc_map(ecc_point *P, mp_int *modulus, mp_digit mp) { mp_int t1, t2; int err; if ((err = mp_init_multi(&t1, &t2, NULL)) != CRYPT_OK) { return CRYPT_MEM; } /* first map z back to normal */ if ((err = mp_montgomery_reduce(&P->z, modulus, mp)) != MP_OKAY) { goto error; } /* get 1/z */ if ((err = mp_invmod(&P->z, modulus, &t1)) != MP_OKAY) { goto error; } /* get 1/z^2 and 1/z^3 */ if ((err = mp_sqr(&t1, &t2)) != MP_OKAY) { goto error; } if ((err = mp_mod(&t2, modulus, &t2)) != MP_OKAY) { goto error; } if ((err = mp_mul(&t1, &t2, &t1)) != MP_OKAY) { goto error; } if ((err = mp_mod(&t1, modulus, &t1)) != MP_OKAY) { goto error; } /* multiply against x/y */ if ((err = mp_mul(&P->x, &t2, &P->x)) != MP_OKAY) { goto error; } if ((err = mp_montgomery_reduce(&P->x, modulus, mp)) != MP_OKAY) { goto error; } if ((err = mp_mul(&P->y, &t1, &P->y)) != MP_OKAY) { goto error; } if ((err = mp_montgomery_reduce(&P->y, modulus, mp)) != MP_OKAY) { goto error; } mp_set(&P->z, 1); err = CRYPT_OK; goto done; error: err = mpi_to_ltc_error(err); done: mp_clear_multi(&t1, &t2, NULL); return err; } /* double a point R = 2P, R can be P*/ static int dbl_point(ecc_point *P, ecc_point *R, mp_int *modulus, mp_digit mp) { mp_int t1, t2; int err; if ((err = mp_init_multi(&t1, &t2, NULL)) != MP_OKAY) { return mpi_to_ltc_error(err); } if ((err = mp_copy(&P->x, &R->x)) != MP_OKAY) { goto error; } if ((err = mp_copy(&P->y, &R->y)) != MP_OKAY) { goto error; } if ((err = mp_copy(&P->z, &R->z)) != MP_OKAY) { goto error; } /* t1 = Z * Z */ if ((err = mp_sqr(&R->z, &t1)) != MP_OKAY) { goto error; } if ((err = mp_montgomery_reduce(&t1, modulus, mp)) != MP_OKAY) { goto error; } /* Z = Y * Z */ if ((err = mp_mul(&R->z, &R->y, &R->z)) != MP_OKAY) { goto error; } if ((err = mp_montgomery_reduce(&R->z, modulus, mp)) != MP_OKAY) { goto error; } /* Z = 2Z */ if ((err = mp_mul_2(&R->z, &R->z)) != MP_OKAY) { goto error; } if (mp_cmp(&R->z, modulus) != MP_LT) { if ((err = mp_sub(&R->z, modulus, &R->z)) != MP_OKAY) { goto error; } } /* T2 = X - T1 */ if ((err = mp_sub(&R->x, &t1, &t2)) != MP_OKAY) { goto error; } if (mp_cmp_d(&t2, 0) == MP_LT) { if ((err = mp_add(&t2, modulus, &t2)) != MP_OKAY) { goto error; } } /* T1 = X + T1 */ if ((err = mp_add(&t1, &R->x, &t1)) != MP_OKAY) { goto error; } if (mp_cmp(&t1, modulus) != MP_LT) { if ((err = mp_sub(&t1, modulus, &t1)) != MP_OKAY) { goto error; } } /* T2 = T1 * T2 */ if ((err = mp_mul(&t1, &t2, &t2)) != MP_OKAY) { goto error; } if ((err = mp_montgomery_reduce(&t2, modulus, mp)) != MP_OKAY) { goto error; } /* T1 = 2T2 */ if ((err = mp_mul_2(&t2, &t1)) != MP_OKAY) { goto error; } if (mp_cmp(&t1, modulus) != MP_LT) { if ((err = mp_sub(&t1, modulus, &t1)) != MP_OKAY) { goto error; } } /* T1 = T1 + T2 */ if ((err = mp_add(&t1, &t2, &t1)) != MP_OKAY) { goto error; } if (mp_cmp(&t1, modulus) != MP_LT) { if ((err = mp_sub(&t1, modulus, &t1)) != MP_OKAY) { goto error; } } /* Y = 2Y */ if ((err = mp_mul_2(&R->y, &R->y)) != MP_OKAY) { goto error; } if (mp_cmp(&R->y, modulus) != MP_LT) { if ((err = mp_sub(&R->y, modulus, &R->y)) != MP_OKAY) { goto error; } } /* Y = Y * Y */ if ((err = mp_sqr(&R->y, &R->y)) != MP_OKAY) { goto error; } if ((err = mp_montgomery_reduce(&R->y, modulus, mp)) != MP_OKAY) { goto error; } /* T2 = Y * Y */ if ((err = mp_sqr(&R->y, &t2)) != MP_OKAY) { goto error; } if ((err = mp_montgomery_reduce(&t2, modulus, mp)) != MP_OKAY) { goto error; } /* T2 = T2/2 */ if (mp_isodd(&t2)) { if ((err = mp_add(&t2, modulus, &t2)) != MP_OKAY) { goto error; } } if ((err = mp_div_2(&t2, &t2)) != MP_OKAY) { goto error; } /* Y = Y * X */ if ((err = mp_mul(&R->y, &R->x, &R->y)) != MP_OKAY) { goto error; } if ((err = mp_montgomery_reduce(&R->y, modulus, mp)) != MP_OKAY) { goto error; } /* X = T1 * T1 */ if ((err = mp_sqr(&t1, &R->x)) != MP_OKAY) { goto error; } if ((err = mp_montgomery_reduce(&R->x, modulus, mp)) != MP_OKAY) { goto error; } /* X = X - Y */ if ((err = mp_sub(&R->x, &R->y, &R->x)) != MP_OKAY) { goto error; } if (mp_cmp_d(&R->x, 0) == MP_LT) { if ((err = mp_add(&R->x, modulus, &R->x)) != MP_OKAY) { goto error; } } /* X = X - Y */ if ((err = mp_sub(&R->x, &R->y, &R->x)) != MP_OKAY) { goto error; } if (mp_cmp_d(&R->x, 0) == MP_LT) { if ((err = mp_add(&R->x, modulus, &R->x)) != MP_OKAY) { goto error; } } /* Y = Y - X */ if ((err = mp_sub(&R->y, &R->x, &R->y)) != MP_OKAY) { goto error; } if (mp_cmp_d(&R->y, 0) == MP_LT) { if ((err = mp_add(&R->y, modulus, &R->y)) != MP_OKAY) { goto error; } } /* Y = Y * T1 */ if ((err = mp_mul(&R->y, &t1, &R->y)) != MP_OKAY) { goto error; } if ((err = mp_montgomery_reduce(&R->y, modulus, mp)) != MP_OKAY) { goto error; } /* Y = Y - T2 */ if ((err = mp_sub(&R->y, &t2, &R->y)) != MP_OKAY) { goto error; } if (mp_cmp_d(&R->y, 0) == MP_LT) { if ((err = mp_add(&R->y, modulus, &R->y)) != MP_OKAY) { goto error; } } err = CRYPT_OK; goto done; error: err = mpi_to_ltc_error(err); done: mp_clear_multi(&t1, &t2, NULL); return err; } /* add two different points over Z/pZ, R = P + Q, note R can equal either P or Q */ static int add_point(ecc_point *P, ecc_point *Q, ecc_point *R, mp_int *modulus, mp_digit mp) { mp_int t1, t2, x, y, z; int err; if ((err = mp_init_multi(&t1, &t2, &x, &y, &z, NULL)) != MP_OKAY) { return mpi_to_ltc_error(err); } if ((err = mp_copy(&P->x, &x)) != MP_OKAY) { goto error; } if ((err = mp_copy(&P->y, &y)) != MP_OKAY) { goto error; } if ((err = mp_copy(&P->z, &z)) != MP_OKAY) { goto error; } /* T1 = Z' * Z' */ if ((err = mp_sqr(&Q->z, &t1)) != MP_OKAY) { goto error; } if ((err = mp_montgomery_reduce(&t1, modulus, mp)) != MP_OKAY) { goto error; } /* X = X * T1 */ if ((err = mp_mul(&t1, &x, &x)) != MP_OKAY) { goto error; } if ((err = mp_montgomery_reduce(&x, modulus, mp)) != MP_OKAY) { goto error; } /* T1 = Z' * T1 */ if ((err = mp_mul(&Q->z, &t1, &t1)) != MP_OKAY) { goto error; } if ((err = mp_montgomery_reduce(&t1, modulus, mp)) != MP_OKAY) { goto error; } /* Y = Y * T1 */ if ((err = mp_mul(&t1, &y, &y)) != MP_OKAY) { goto error; } if ((err = mp_montgomery_reduce(&y, modulus, mp)) != MP_OKAY) { goto error; } /* T1 = Z*Z */ if ((err = mp_sqr(&z, &t1)) != MP_OKAY) { goto error; } if ((err = mp_montgomery_reduce(&t1, modulus, mp)) != MP_OKAY) { goto error; } /* T2 = X' * T1 */ if ((err = mp_mul(&Q->x, &t1, &t2)) != MP_OKAY) { goto error; } if ((err = mp_montgomery_reduce(&t2, modulus, mp)) != MP_OKAY) { goto error; } /* T1 = Z * T1 */ if ((err = mp_mul(&z, &t1, &t1)) != MP_OKAY) { goto error; } if ((err = mp_montgomery_reduce(&t1, modulus, mp)) != MP_OKAY) { goto error; } /* T1 = Y' * T1 */ if ((err = mp_mul(&Q->y, &t1, &t1)) != MP_OKAY) { goto error; } if ((err = mp_montgomery_reduce(&t1, modulus, mp)) != MP_OKAY) { goto error; } /* Y = Y - T1 */ if ((err = mp_sub(&y, &t1, &y)) != MP_OKAY) { goto error; } if (mp_cmp_d(&y, 0) == MP_LT) { if ((err = mp_add(&y, modulus, &y)) != MP_OKAY) { goto error; } } /* T1 = 2T1 */ if ((err = mp_mul_2(&t1, &t1)) != MP_OKAY) { goto error; } if (mp_cmp(&t1, modulus) != MP_LT) { if ((err = mp_sub(&t1, modulus, &t1)) != MP_OKAY) { goto error; } } /* T1 = Y + T1 */ if ((err = mp_add(&t1, &y, &t1)) != MP_OKAY) { goto error; } if (mp_cmp(&t1, modulus) != MP_LT) { if ((err = mp_sub(&t1, modulus, &t1)) != MP_OKAY) { goto error; } } /* X = X - T2 */ if ((err = mp_sub(&x, &t2, &x)) != MP_OKAY) { goto error; } if (mp_cmp_d(&x, 0) == MP_LT) { if ((err = mp_add(&x, modulus, &x)) != MP_OKAY) { goto error; } } /* T2 = 2T2 */ if ((err = mp_mul_2(&t2, &t2)) != MP_OKAY) { goto error; } if (mp_cmp(&t2, modulus) != MP_LT) { if ((err = mp_sub(&t2, modulus, &t2)) != MP_OKAY) { goto error; } } /* T2 = X + T2 */ if ((err = mp_add(&t2, &x, &t2)) != MP_OKAY) { goto error; } if (mp_cmp(&t2, modulus) != MP_LT) { if ((err = mp_sub(&t2, modulus, &t2)) != MP_OKAY) { goto error; } } /* if Z' != 1 */ if (mp_cmp_d(&Q->z, 1) != MP_EQ) { /* Z = Z * Z' */ if ((err = mp_mul(&z, &Q->z, &z)) != MP_OKAY) { goto error; } if ((err = mp_montgomery_reduce(&z, modulus, mp)) != MP_OKAY) { goto error; } } /* Z = Z * X */ if ((err = mp_mul(&z, &x, &z)) != MP_OKAY) { goto error; } if ((err = mp_montgomery_reduce(&z, modulus, mp)) != MP_OKAY) { goto error; } /* T1 = T1 * X */ if ((err = mp_mul(&t1, &x, &t1)) != MP_OKAY) { goto error; } if ((err = mp_montgomery_reduce(&t1, modulus, mp)) != MP_OKAY) { goto error; } /* X = X * X */ if ((err = mp_sqr(&x, &x)) != MP_OKAY) { goto error; } if ((err = mp_montgomery_reduce(&x, modulus, mp)) != MP_OKAY) { goto error; } /* T2 = T2 * x */ if ((err = mp_mul(&t2, &x, &t2)) != MP_OKAY) { goto error; } if ((err = mp_montgomery_reduce(&t2, modulus, mp)) != MP_OKAY) { goto error; } /* T1 = T1 * X */ if ((err = mp_mul(&t1, &x, &t1)) != MP_OKAY) { goto error; } if ((err = mp_montgomery_reduce(&t1, modulus, mp)) != MP_OKAY) { goto error; } /* X = Y*Y */ if ((err = mp_sqr(&y, &x)) != MP_OKAY) { goto error; } if ((err = mp_montgomery_reduce(&x, modulus, mp)) != MP_OKAY) { goto error; } /* X = X - T2 */ if ((err = mp_sub(&x, &t2, &x)) != MP_OKAY) { goto error; } if (mp_cmp_d(&x, 0) == MP_LT) { if ((err = mp_add(&x, modulus, &x)) != MP_OKAY) { goto error; } } /* T2 = T2 - X */ if ((err = mp_sub(&t2, &x, &t2)) != MP_OKAY) { goto error; } if (mp_cmp_d(&t2, 0) == MP_LT) { if ((err = mp_add(&t2, modulus, &t2)) != MP_OKAY) { goto error; } } /* T2 = T2 - X */ if ((err = mp_sub(&t2, &x, &t2)) != MP_OKAY) { goto error; } if (mp_cmp_d(&t2, 0) == MP_LT) { if ((err = mp_add(&t2, modulus, &t2)) != MP_OKAY) { goto error; } } /* T2 = T2 * Y */ if ((err = mp_mul(&t2, &y, &t2)) != MP_OKAY) { goto error; } if ((err = mp_montgomery_reduce(&t2, modulus, mp)) != MP_OKAY) { goto error; } /* Y = T2 - T1 */ if ((err = mp_sub(&t2, &t1, &y)) != MP_OKAY) { goto error; } if (mp_cmp_d(&y, 0) == MP_LT) { if ((err = mp_add(&y, modulus, &y)) != MP_OKAY) { goto error; } } /* Y = Y/2 */ if (mp_isodd(&y)) { if ((err = mp_add(&y, modulus, &y)) != MP_OKAY) { goto error; } } if ((err = mp_div_2(&y, &y)) != MP_OKAY) { goto error; } if ((err = mp_copy(&x, &R->x)) != MP_OKAY) { goto error; } if ((err = mp_copy(&y, &R->y)) != MP_OKAY) { goto error; } if ((err = mp_copy(&z, &R->z)) != MP_OKAY) { goto error; } err = CRYPT_OK; goto done; error: err = mpi_to_ltc_error(err); done: mp_clear_multi(&t1, &t2, &x, &y, &z, NULL); return err; } /* size of sliding window, don't change this! */ #define WINSIZE 4 /* perform R = kG where k == integer and G == ecc_point */ static int ecc_mulmod(mp_int *k, ecc_point *G, ecc_point *R, mp_int *modulus, int map) { ecc_point *tG, *M[8]; int i, j, err; mp_int mu; mp_digit buf, mp; int first, bitbuf, bitcpy, bitcnt, mode, digidx; /* init montgomery reduction */ if ((err = mp_montgomery_setup(modulus, &mp)) != MP_OKAY) { return CRYPT_INVALID_ARG; } if ((err = mp_init(&mu)) != MP_OKAY) { return CRYPT_MEM; } if ((err = mp_montgomery_calc_normalization(&mu, modulus)) != MP_OKAY) { mp_clear(&mu); return CRYPT_INVALID_ARG; } /* alloc ram for window temps */ for (i = 0; i < 8; i++) { M[i] = new_point(); if (M[i] == NULL) { for (j = 0; j < i; j++) { del_point(M[j]); } mp_clear(&mu); return CRYPT_MEM; } } /* make a copy of G incase R==G */ tG = new_point(); if (tG == NULL) { err = CRYPT_MEM; goto done; } /* tG = G and convert to montgomery */ if ((err = mp_mulmod(&G->x, &mu, modulus, &tG->x)) != MP_OKAY) { goto error; } if ((err = mp_mulmod(&G->y, &mu, modulus, &tG->y)) != MP_OKAY) { goto error; } if ((err = mp_mulmod(&G->z, &mu, modulus, &tG->z)) != MP_OKAY) { goto error; } mp_clear(&mu); /* calc the M tab, which holds kG for k==8..15 */ /* M[0] == 8G */ if ((err = dbl_point(tG, M[0], modulus, mp)) != CRYPT_OK) { goto done; } if ((err = dbl_point(M[0], M[0], modulus, mp)) != CRYPT_OK) { goto done; } if ((err = dbl_point(M[0], M[0], modulus, mp)) != CRYPT_OK) { goto done; } /* now find (8+k)G for k=1..7 */ for (j = 9; j < 16; j++) { if ((err = add_point(M[j-9], tG, M[j-8], modulus, mp)) != CRYPT_OK) { goto done; } } /* setup sliding window */ mode = 0; bitcnt = 1; buf = 0; digidx = k->used - 1; bitcpy = bitbuf = 0; first = 1; /* perform ops */ for (;;) { /* grab next digit as required */ if (--bitcnt == 0) { if (digidx == -1) { break; } buf = k->dp[digidx--]; bitcnt = (int) DIGIT_BIT; } /* grab the next msb from the ltiplicand */ i = (buf >> (DIGIT_BIT - 1)) & 1; buf <<= 1; /* skip leading zero bits */ if (mode == 0 && i == 0) { continue; } /* if the bit is zero and mode == 1 then we double */ if (mode == 1 && i == 0) { if ((err = dbl_point(R, R, modulus, mp)) != CRYPT_OK) { goto done; } continue; } /* else we add it to the window */ bitbuf |= (i << (WINSIZE - ++bitcpy)); mode = 2; if (bitcpy == WINSIZE) { /* if this is the first window we do a simple copy */ if (first == 1) { /* R = kG [k = first window] */ if ((err = mp_copy(&M[bitbuf-8]->x, &R->x)) != MP_OKAY) { goto error; } if ((err = mp_copy(&M[bitbuf-8]->y, &R->y)) != MP_OKAY) { goto error; } if ((err = mp_copy(&M[bitbuf-8]->z, &R->z)) != MP_OKAY) { goto error; } first = 0; } else { /* normal window */ /* ok window is filled so double as required and add */ /* double first */ for (j = 0; j < WINSIZE; j++) { if ((err = dbl_point(R, R, modulus, mp)) != CRYPT_OK) { goto done; } } /* then add, bitbuf will be 8..15 [8..2^WINSIZE] guaranteed */ if ((err = add_point(R, M[bitbuf-8], R, modulus, mp)) != CRYPT_OK) { goto done; } } /* empty window and reset */ bitcpy = bitbuf = 0; mode = 1; } } /* if bits remain then double/add */ if (mode == 2 && bitcpy > 0) { /* double then add */ for (j = 0; j < bitcpy; j++) { /* only double if we have had at least one add first */ if (first == 0) { if ((err = dbl_point(R, R, modulus, mp)) != CRYPT_OK) { goto done; } } bitbuf <<= 1; if ((bitbuf & (1 << WINSIZE)) != 0) { if (first == 1){ /* first add, so copy */ if ((err = mp_copy(&tG->x, &R->x)) != MP_OKAY) { goto error; } if ((err = mp_copy(&tG->y, &R->y)) != MP_OKAY) { goto error; } if ((err = mp_copy(&tG->z, &R->z)) != MP_OKAY) { goto error; } first = 0; } else { /* then add */ if ((err = add_point(R, tG, R, modulus, mp)) != CRYPT_OK) { goto done; } } } } } /* map R back from projective space */ if (map) { err = ecc_map(R, modulus, mp); } else { err = CRYPT_OK; } goto done; error: err = mpi_to_ltc_error(err); done: del_point(tG); for (i = 0; i < 8; i++) { del_point(M[i]); } return err; } #undef WINSIZE /** Perform on the ECC system @return CRYPT_OK if successful */ int ecc_test(void) { mp_int modulus, order; ecc_point *G, *GG; int i, err, primality; if ((err = mp_init_multi(&modulus, &order, NULL)) != MP_OKAY) { return mpi_to_ltc_error(err); } G = new_point(); GG = new_point(); if (G == NULL || GG == NULL) { mp_clear_multi(&modulus, &order, NULL); del_point(G); del_point(GG); return CRYPT_MEM; } for (i = 0; sets[i].size; i++) { #if 0 printf("Testing %d\n", sets[i].size); #endif if ((err = mp_read_radix(&modulus, (char *)sets[i].prime, 64)) != MP_OKAY) { goto error; } if ((err = mp_read_radix(&order, (char *)sets[i].order, 64)) != MP_OKAY) { goto error; } /* is prime actually prime? */ if ((err = is_prime(&modulus, &primality)) != CRYPT_OK) { goto done; } if (primality == 0) { err = CRYPT_FAIL_TESTVECTOR; goto done; } /* is order prime ? */ if ((err = is_prime(&order, &primality)) != CRYPT_OK) { goto done; } if (primality == 0) { err = CRYPT_FAIL_TESTVECTOR; goto done; } if ((err = mp_read_radix(&G->x, (char *)sets[i].Gx, 64)) != MP_OKAY) { goto error; } if ((err = mp_read_radix(&G->y, (char *)sets[i].Gy, 64)) != MP_OKAY) { goto error; } mp_set(&G->z, 1); /* then we should have G == (order + 1)G */ if ((err = mp_add_d(&order, 1, &order)) != MP_OKAY) { goto error; } if ((err = ecc_mulmod(&order, G, GG, &modulus, 1)) != CRYPT_OK) { goto done; } if (mp_cmp(&G->x, &GG->x) != 0 || mp_cmp(&G->y, &GG->y) != 0) { err = CRYPT_FAIL_TESTVECTOR; goto done; } } err = CRYPT_OK; goto done; error: err = mpi_to_ltc_error(err); done: del_point(GG); del_point(G); mp_clear_multi(&order, &modulus, NULL); return err; } void ecc_sizes(int *low, int *high) { int i; LTC_ARGCHK(low != NULL); LTC_ARGCHK(high != NULL); *low = INT_MAX; *high = 0; for (i = 0; sets[i].size != 0; i++) { if (sets[i].size < *low) { *low = sets[i].size; } if (sets[i].size > *high) { *high = sets[i].size; } } } /** Make a new ECC key @param prng An active PRNG state @param wprng The index of the PRNG you wish to use @param keysize The keysize for the new key (in octets from 20 to 65 bytes) @param key [out] Destination of the newly created key @return CRYPT_OK if successful, upon error all allocated memory will be freed */ int ecc_make_key(prng_state *prng, int wprng, int keysize, ecc_key *key) { int x, err; ecc_point *base; mp_int prime; unsigned char *buf; LTC_ARGCHK(key != NULL); /* good prng? */ if ((err = prng_is_valid(wprng)) != CRYPT_OK) { return err; } /* find key size */ for (x = 0; (keysize > sets[x].size) && (sets[x].size != 0); x++); keysize = sets[x].size; if (keysize > ECC_MAXSIZE || sets[x].size == 0) { return CRYPT_INVALID_KEYSIZE; } key->idx = x; /* allocate ram */ base = NULL; buf = XMALLOC(ECC_MAXSIZE); if (buf == NULL) { return CRYPT_MEM; } /* make up random string */ if (prng_descriptor[wprng].read(buf, (unsigned long)keysize, prng) != (unsigned long)keysize) { err = CRYPT_ERROR_READPRNG; goto LBL_ERR2; } /* setup the key variables */ if ((err = mp_init_multi(&key->pubkey.x, &key->pubkey.y, &key->pubkey.z, &key->k, &prime, NULL)) != MP_OKAY) { err = mpi_to_ltc_error(err); goto LBL_ERR; } base = new_point(); if (base == NULL) { mp_clear_multi(&key->pubkey.x, &key->pubkey.y, &key->pubkey.z, &key->k, &prime, NULL); err = CRYPT_MEM; goto LBL_ERR; } /* read in the specs for this key */ if ((err = mp_read_radix(&prime, (char *)sets[key->idx].prime, 64)) != MP_OKAY) { goto error; } if ((err = mp_read_radix(&base->x, (char *)sets[key->idx].Gx, 64)) != MP_OKAY) { goto error; } if ((err = mp_read_radix(&base->y, (char *)sets[key->idx].Gy, 64)) != MP_OKAY) { goto error; } mp_set(&base->z, 1); if ((err = mp_read_unsigned_bin(&key->k, (unsigned char *)buf, keysize)) != MP_OKAY) { goto error; } /* make the public key */ if ((err = ecc_mulmod(&key->k, base, &key->pubkey, &prime, 1)) != CRYPT_OK) { goto LBL_ERR; } key->type = PK_PRIVATE; /* shrink key */ if ((err = mp_shrink(&key->k)) != MP_OKAY) { goto error; } if ((err = mp_shrink(&key->pubkey.x)) != MP_OKAY) { goto error; } if ((err = mp_shrink(&key->pubkey.y)) != MP_OKAY) { goto error; } if ((err = mp_shrink(&key->pubkey.z)) != MP_OKAY) { goto error; } /* free up ram */ err = CRYPT_OK; goto LBL_ERR; error: err = mpi_to_ltc_error(err); LBL_ERR: del_point(base); mp_clear(&prime); LBL_ERR2: #ifdef LTC_CLEAN_STACK zeromem(buf, ECC_MAXSIZE); #endif XFREE(buf); return err; } /** Free an ECC key from memory @param key The key you wish to free */ void ecc_free(ecc_key *key) { LTC_ARGCHK(key != NULL); mp_clear_multi(&key->pubkey.x, &key->pubkey.y, &key->pubkey.z, &key->k, NULL); } /** Export an ECC key as a binary packet @param out [out] Destination for the key @param outlen [in/out] Max size and resulting size of the exported key @param type The type of key you want to export (PK_PRIVATE or PK_PUBLIC) @param key The key to export @return CRYPT_OK if successful */ int ecc_export(unsigned char *out, unsigned long *outlen, int type, ecc_key *key) { int err; unsigned char flags[1]; unsigned long key_size; LTC_ARGCHK(out != NULL); LTC_ARGCHK(outlen != NULL); LTC_ARGCHK(key != NULL); /* type valid? */ if (key->type != PK_PRIVATE && type == PK_PRIVATE) { return CRYPT_PK_TYPE_MISMATCH; } if (is_valid_idx(key->idx) == 0) { return CRYPT_INVALID_ARG; } /* we store the NIST byte size */ key_size = sets[key->idx].size; if (type == PK_PRIVATE) { flags[0] = 1; err = der_encode_sequence_multi(out, outlen, LTC_ASN1_BIT_STRING, 1UL, flags, LTC_ASN1_SHORT_INTEGER, 1UL, &key_size, LTC_ASN1_INTEGER, 1UL, &key->pubkey.x, LTC_ASN1_INTEGER, 1UL, &key->pubkey.y, LTC_ASN1_INTEGER, 1UL, &key->k, LTC_ASN1_EOL, 0UL, NULL); } else { flags[0] = 0; err = der_encode_sequence_multi(out, outlen, LTC_ASN1_BIT_STRING, 1UL, flags, LTC_ASN1_SHORT_INTEGER, 1UL, &key_size, LTC_ASN1_INTEGER, 1UL, &key->pubkey.x, LTC_ASN1_INTEGER, 1UL, &key->pubkey.y, LTC_ASN1_EOL, 0UL, NULL); } return err; } /** Import an ECC key from a binary packet @param in The packet to import @param inlen The length of the packet @param key [out] The destination of the import @return CRYPT_OK if successful, upon error all allocated memory will be freed */ int ecc_import(const unsigned char *in, unsigned long inlen, ecc_key *key) { unsigned long key_size; unsigned char flags[1]; int err; LTC_ARGCHK(in != NULL); LTC_ARGCHK(key != NULL); /* init key */ if (mp_init_multi(&key->pubkey.x, &key->pubkey.y, &key->pubkey.z, &key->k, NULL) != MP_OKAY) { return CRYPT_MEM; } /* find out what type of key it is */ if ((err = der_decode_sequence_multi(in, inlen, LTC_ASN1_BIT_STRING, 1UL, &flags, LTC_ASN1_EOL, 0UL, NULL)) != CRYPT_OK) { goto error; } if (flags[0] == 1) { /* private key */ key->type = PK_PRIVATE; if ((err = der_decode_sequence_multi(in, inlen, LTC_ASN1_BIT_STRING, 1UL, flags, LTC_ASN1_SHORT_INTEGER, 1UL, &key_size, LTC_ASN1_INTEGER, 1UL, &key->pubkey.x, LTC_ASN1_INTEGER, 1UL, &key->pubkey.y, LTC_ASN1_INTEGER, 1UL, &key->k, LTC_ASN1_EOL, 0UL, NULL)) != CRYPT_OK) { goto error; } } else { /* public key */ /* private key */ key->type = PK_PUBLIC; if ((err = der_decode_sequence_multi(in, inlen, LTC_ASN1_BIT_STRING, 1UL, flags, LTC_ASN1_SHORT_INTEGER, 1UL, &key_size, LTC_ASN1_INTEGER, 1UL, &key->pubkey.x, LTC_ASN1_INTEGER, 1UL, &key->pubkey.y, LTC_ASN1_EOL, 0UL, NULL)) != CRYPT_OK) { goto error; } } /* find the idx */ for (key->idx = 0; sets[key->idx].size && (unsigned long)sets[key->idx].size != key_size; ++key->idx); if (sets[key->idx].size == 0) { err = CRYPT_INVALID_PACKET; goto error; } /* set z */ mp_set(&key->pubkey.z, 1); /* we're good */ return CRYPT_OK; error: mp_clear_multi(&key->pubkey.x, &key->pubkey.y, &key->pubkey.z, &key->k, NULL); return err; } /** Create an ECC shared secret between two keys @param private_key The private ECC key @param public_key The public key @param out [out] Destination of the shared secret (Conforms to EC-DH from ANSI X9.63) @param outlen [in/out] The max size and resulting size of the shared secret @return CRYPT_OK if successful */ int ecc_shared_secret(ecc_key *private_key, ecc_key *public_key, unsigned char *out, unsigned long *outlen) { unsigned long x; ecc_point *result; mp_int prime; int err; LTC_ARGCHK(private_key != NULL); LTC_ARGCHK(public_key != NULL); LTC_ARGCHK(out != NULL); LTC_ARGCHK(outlen != NULL); /* type valid? */ if (private_key->type != PK_PRIVATE) { return CRYPT_PK_NOT_PRIVATE; } if (is_valid_idx(private_key->idx) == 0) { return CRYPT_INVALID_ARG; } if (private_key->idx != public_key->idx) { return CRYPT_PK_TYPE_MISMATCH; } /* make new point */ result = new_point(); if (result == NULL) { return CRYPT_MEM; } if ((err = mp_init(&prime)) != MP_OKAY) { del_point(result); return mpi_to_ltc_error(err); } if ((err = mp_read_radix(&prime, (char *)sets[private_key->idx].prime, 64)) != MP_OKAY) { goto error; } if ((err = ecc_mulmod(&private_key->k, &public_key->pubkey, result, &prime, 1)) != CRYPT_OK) { goto done1; } x = (unsigned long)mp_unsigned_bin_size(&prime); if (*outlen < x) { err = CRYPT_BUFFER_OVERFLOW; goto done1; } zeromem(out, x); if ((err = mp_to_unsigned_bin(&result->x, out + (x - mp_unsigned_bin_size(&result->x)))) != MP_OKAY) { goto error; } err = CRYPT_OK; *outlen = x; goto done1; error: err = mpi_to_ltc_error(err); done1: mp_clear(&prime); del_point(result); return err; } /** Get the size of an ECC key @param key The key to get the size of @return The size (octets) of the key or INT_MAX on error */ int ecc_get_size(ecc_key *key) { LTC_ARGCHK(key != NULL); if (is_valid_idx(key->idx)) return sets[key->idx].size; else return INT_MAX; /* large value known to cause it to fail when passed to ecc_make_key() */ } #include "ecc_sys.c" #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/ecc/ecc.c,v $ */ /* $Revision: 1.20 $ */ /* $Date: 2005/06/14 20:42:28 $ */