view libtommath/bn_mp_invmod_slow.c @ 1630:9579377b5f8b

use strlcpy & strlcat (#74) * refactor checkpubkeyperms() with safe BSD functions fix gcc8 warnings ``` svr-authpubkey.c: In function 'checkpubkeyperms': svr-authpubkey.c:427:2: warning: 'strncat' specified bound 5 equals source length [-Wstringop-overflow=] strncat(filename, "/.ssh", 5); /* strlen("/.ssh") == 5 */ ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~ svr-authpubkey.c:433:2: warning: 'strncat' specified bound 16 equals source length [-Wstringop-overflow=] strncat(filename, "/authorized_keys", 16); ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ``` see https://www.sudo.ws/todd/papers/strlcpy.html * restore strlcpy in xstrdup see original https://cvsweb.openbsd.org/cgi-bin/cvsweb/src/usr.bin/ssh/xmalloc.c?rev=1.16
author François Perrad <francois.perrad@gadz.org>
date Wed, 20 Mar 2019 15:09:19 +0100
parents 8bba51a55704
children f52919ffd3b1
line wrap: on
line source

#include <tommath_private.h>
#ifdef BN_MP_INVMOD_SLOW_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* hac 14.61, pp608 */
int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c)
{
  mp_int  x, y, u, v, A, B, C, D;
  int     res;

  /* b cannot be negative */
  if ((b->sign == MP_NEG) || (mp_iszero(b) == MP_YES)) {
    return MP_VAL;
  }

  /* init temps */
  if ((res = mp_init_multi(&x, &y, &u, &v, 
                           &A, &B, &C, &D, NULL)) != MP_OKAY) {
     return res;
  }

  /* x = a, y = b */
  if ((res = mp_mod(a, b, &x)) != MP_OKAY) {
      goto LBL_ERR;
  }
  if ((res = mp_copy (b, &y)) != MP_OKAY) {
    goto LBL_ERR;
  }

  /* 2. [modified] if x,y are both even then return an error! */
  if ((mp_iseven (&x) == MP_YES) && (mp_iseven (&y) == MP_YES)) {
    res = MP_VAL;
    goto LBL_ERR;
  }

  /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
  if ((res = mp_copy (&x, &u)) != MP_OKAY) {
    goto LBL_ERR;
  }
  if ((res = mp_copy (&y, &v)) != MP_OKAY) {
    goto LBL_ERR;
  }
  mp_set (&A, 1);
  mp_set (&D, 1);

top:
  /* 4.  while u is even do */
  while (mp_iseven (&u) == MP_YES) {
    /* 4.1 u = u/2 */
    if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
      goto LBL_ERR;
    }
    /* 4.2 if A or B is odd then */
    if ((mp_isodd (&A) == MP_YES) || (mp_isodd (&B) == MP_YES)) {
      /* A = (A+y)/2, B = (B-x)/2 */
      if ((res = mp_add (&A, &y, &A)) != MP_OKAY) {
         goto LBL_ERR;
      }
      if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
         goto LBL_ERR;
      }
    }
    /* A = A/2, B = B/2 */
    if ((res = mp_div_2 (&A, &A)) != MP_OKAY) {
      goto LBL_ERR;
    }
    if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
      goto LBL_ERR;
    }
  }

  /* 5.  while v is even do */
  while (mp_iseven (&v) == MP_YES) {
    /* 5.1 v = v/2 */
    if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
      goto LBL_ERR;
    }
    /* 5.2 if C or D is odd then */
    if ((mp_isodd (&C) == MP_YES) || (mp_isodd (&D) == MP_YES)) {
      /* C = (C+y)/2, D = (D-x)/2 */
      if ((res = mp_add (&C, &y, &C)) != MP_OKAY) {
         goto LBL_ERR;
      }
      if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
         goto LBL_ERR;
      }
    }
    /* C = C/2, D = D/2 */
    if ((res = mp_div_2 (&C, &C)) != MP_OKAY) {
      goto LBL_ERR;
    }
    if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
      goto LBL_ERR;
    }
  }

  /* 6.  if u >= v then */
  if (mp_cmp (&u, &v) != MP_LT) {
    /* u = u - v, A = A - C, B = B - D */
    if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
      goto LBL_ERR;
    }

    if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) {
      goto LBL_ERR;
    }

    if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
      goto LBL_ERR;
    }
  } else {
    /* v - v - u, C = C - A, D = D - B */
    if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
      goto LBL_ERR;
    }

    if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) {
      goto LBL_ERR;
    }

    if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
      goto LBL_ERR;
    }
  }

  /* if not zero goto step 4 */
  if (mp_iszero (&u) == MP_NO)
    goto top;

  /* now a = C, b = D, gcd == g*v */

  /* if v != 1 then there is no inverse */
  if (mp_cmp_d (&v, 1) != MP_EQ) {
    res = MP_VAL;
    goto LBL_ERR;
  }

  /* if its too low */
  while (mp_cmp_d(&C, 0) == MP_LT) {
      if ((res = mp_add(&C, b, &C)) != MP_OKAY) {
         goto LBL_ERR;
      }
  }
  
  /* too big */
  while (mp_cmp_mag(&C, b) != MP_LT) {
      if ((res = mp_sub(&C, b, &C)) != MP_OKAY) {
         goto LBL_ERR;
      }
  }
  
  /* C is now the inverse */
  mp_exch (&C, c);
  res = MP_OKAY;
LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL);
  return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */