Mercurial > dropbear
view libtommath/bn_mp_montgomery_reduce.c @ 1630:9579377b5f8b
use strlcpy & strlcat (#74)
* refactor checkpubkeyperms() with safe BSD functions
fix gcc8 warnings
```
svr-authpubkey.c: In function 'checkpubkeyperms':
svr-authpubkey.c:427:2: warning: 'strncat' specified bound 5 equals source length [-Wstringop-overflow=]
strncat(filename, "/.ssh", 5); /* strlen("/.ssh") == 5 */
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~
svr-authpubkey.c:433:2: warning: 'strncat' specified bound 16 equals source length [-Wstringop-overflow=]
strncat(filename, "/authorized_keys", 16);
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
```
see https://www.sudo.ws/todd/papers/strlcpy.html
* restore strlcpy in xstrdup
see original https://cvsweb.openbsd.org/cgi-bin/cvsweb/src/usr.bin/ssh/xmalloc.c?rev=1.16
author | François Perrad <francois.perrad@gadz.org> |
---|---|
date | Wed, 20 Mar 2019 15:09:19 +0100 |
parents | 8bba51a55704 |
children | f52919ffd3b1 |
line wrap: on
line source
#include <tommath_private.h> #ifdef BN_MP_MONTGOMERY_REDUCE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, [email protected], http://libtom.org */ /* computes xR**-1 == x (mod N) via Montgomery Reduction */ int mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho) { int ix, res, digs; mp_digit mu; /* can the fast reduction [comba] method be used? * * Note that unlike in mul you're safely allowed *less* * than the available columns [255 per default] since carries * are fixed up in the inner loop. */ digs = (n->used * 2) + 1; if ((digs < MP_WARRAY) && (n->used < (1 << ((CHAR_BIT * sizeof(mp_word)) - (2 * DIGIT_BIT))))) { return fast_mp_montgomery_reduce (x, n, rho); } /* grow the input as required */ if (x->alloc < digs) { if ((res = mp_grow (x, digs)) != MP_OKAY) { return res; } } x->used = digs; for (ix = 0; ix < n->used; ix++) { /* mu = ai * rho mod b * * The value of rho must be precalculated via * montgomery_setup() such that * it equals -1/n0 mod b this allows the * following inner loop to reduce the * input one digit at a time */ mu = (mp_digit) (((mp_word)x->dp[ix] * (mp_word)rho) & MP_MASK); /* a = a + mu * m * b**i */ { int iy; mp_digit *tmpn, *tmpx, u; mp_word r; /* alias for digits of the modulus */ tmpn = n->dp; /* alias for the digits of x [the input] */ tmpx = x->dp + ix; /* set the carry to zero */ u = 0; /* Multiply and add in place */ for (iy = 0; iy < n->used; iy++) { /* compute product and sum */ r = ((mp_word)mu * (mp_word)*tmpn++) + (mp_word) u + (mp_word) *tmpx; /* get carry */ u = (mp_digit)(r >> ((mp_word) DIGIT_BIT)); /* fix digit */ *tmpx++ = (mp_digit)(r & ((mp_word) MP_MASK)); } /* At this point the ix'th digit of x should be zero */ /* propagate carries upwards as required*/ while (u != 0) { *tmpx += u; u = *tmpx >> DIGIT_BIT; *tmpx++ &= MP_MASK; } } } /* at this point the n.used'th least * significant digits of x are all zero * which means we can shift x to the * right by n.used digits and the * residue is unchanged. */ /* x = x/b**n.used */ mp_clamp(x); mp_rshd (x, n->used); /* if x >= n then x = x - n */ if (mp_cmp_mag (x, n) != MP_LT) { return s_mp_sub (x, n, x); } return MP_OKAY; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */