Mercurial > dropbear
view libtomcrypt/src/hashes/rmd256.c @ 965:e9579816f20e DROPBEAR_2014.65
2014.64
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Fri, 08 Aug 2014 21:40:42 +0800 |
parents | 0cbe8f6dbf9e |
children | f849a5ca2efc |
line wrap: on
line source
/* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, [email protected], http://libtomcrypt.com */ #include "tomcrypt.h" /** @param rmd256.c RMD256 Hash function */ #ifdef RIPEMD256 const struct ltc_hash_descriptor rmd256_desc = { "rmd256", 8, 16, 64, /* OID */ { 1, 3, 36, 3, 2, 3 }, 6, &rmd256_init, &rmd256_process, &rmd256_done, &rmd256_test, NULL }; /* the four basic functions F(), G() and H() */ #define F(x, y, z) ((x) ^ (y) ^ (z)) #define G(x, y, z) (((x) & (y)) | (~(x) & (z))) #define H(x, y, z) (((x) | ~(y)) ^ (z)) #define I(x, y, z) (((x) & (z)) | ((y) & ~(z))) /* the eight basic operations FF() through III() */ #define FF(a, b, c, d, x, s) \ (a) += F((b), (c), (d)) + (x);\ (a) = ROLc((a), (s)); #define GG(a, b, c, d, x, s) \ (a) += G((b), (c), (d)) + (x) + 0x5a827999UL;\ (a) = ROLc((a), (s)); #define HH(a, b, c, d, x, s) \ (a) += H((b), (c), (d)) + (x) + 0x6ed9eba1UL;\ (a) = ROLc((a), (s)); #define II(a, b, c, d, x, s) \ (a) += I((b), (c), (d)) + (x) + 0x8f1bbcdcUL;\ (a) = ROLc((a), (s)); #define FFF(a, b, c, d, x, s) \ (a) += F((b), (c), (d)) + (x);\ (a) = ROLc((a), (s)); #define GGG(a, b, c, d, x, s) \ (a) += G((b), (c), (d)) + (x) + 0x6d703ef3UL;\ (a) = ROLc((a), (s)); #define HHH(a, b, c, d, x, s) \ (a) += H((b), (c), (d)) + (x) + 0x5c4dd124UL;\ (a) = ROLc((a), (s)); #define III(a, b, c, d, x, s) \ (a) += I((b), (c), (d)) + (x) + 0x50a28be6UL;\ (a) = ROLc((a), (s)); #ifdef LTC_CLEAN_STACK static int _rmd256_compress(hash_state *md, unsigned char *buf) #else static int rmd256_compress(hash_state *md, unsigned char *buf) #endif { ulong32 aa,bb,cc,dd,aaa,bbb,ccc,ddd,tmp,X[16]; int i; /* load words X */ for (i = 0; i < 16; i++){ LOAD32L(X[i], buf + (4 * i)); } /* load state */ aa = md->rmd256.state[0]; bb = md->rmd256.state[1]; cc = md->rmd256.state[2]; dd = md->rmd256.state[3]; aaa = md->rmd256.state[4]; bbb = md->rmd256.state[5]; ccc = md->rmd256.state[6]; ddd = md->rmd256.state[7]; /* round 1 */ FF(aa, bb, cc, dd, X[ 0], 11); FF(dd, aa, bb, cc, X[ 1], 14); FF(cc, dd, aa, bb, X[ 2], 15); FF(bb, cc, dd, aa, X[ 3], 12); FF(aa, bb, cc, dd, X[ 4], 5); FF(dd, aa, bb, cc, X[ 5], 8); FF(cc, dd, aa, bb, X[ 6], 7); FF(bb, cc, dd, aa, X[ 7], 9); FF(aa, bb, cc, dd, X[ 8], 11); FF(dd, aa, bb, cc, X[ 9], 13); FF(cc, dd, aa, bb, X[10], 14); FF(bb, cc, dd, aa, X[11], 15); FF(aa, bb, cc, dd, X[12], 6); FF(dd, aa, bb, cc, X[13], 7); FF(cc, dd, aa, bb, X[14], 9); FF(bb, cc, dd, aa, X[15], 8); /* parallel round 1 */ III(aaa, bbb, ccc, ddd, X[ 5], 8); III(ddd, aaa, bbb, ccc, X[14], 9); III(ccc, ddd, aaa, bbb, X[ 7], 9); III(bbb, ccc, ddd, aaa, X[ 0], 11); III(aaa, bbb, ccc, ddd, X[ 9], 13); III(ddd, aaa, bbb, ccc, X[ 2], 15); III(ccc, ddd, aaa, bbb, X[11], 15); III(bbb, ccc, ddd, aaa, X[ 4], 5); III(aaa, bbb, ccc, ddd, X[13], 7); III(ddd, aaa, bbb, ccc, X[ 6], 7); III(ccc, ddd, aaa, bbb, X[15], 8); III(bbb, ccc, ddd, aaa, X[ 8], 11); III(aaa, bbb, ccc, ddd, X[ 1], 14); III(ddd, aaa, bbb, ccc, X[10], 14); III(ccc, ddd, aaa, bbb, X[ 3], 12); III(bbb, ccc, ddd, aaa, X[12], 6); tmp = aa; aa = aaa; aaa = tmp; /* round 2 */ GG(aa, bb, cc, dd, X[ 7], 7); GG(dd, aa, bb, cc, X[ 4], 6); GG(cc, dd, aa, bb, X[13], 8); GG(bb, cc, dd, aa, X[ 1], 13); GG(aa, bb, cc, dd, X[10], 11); GG(dd, aa, bb, cc, X[ 6], 9); GG(cc, dd, aa, bb, X[15], 7); GG(bb, cc, dd, aa, X[ 3], 15); GG(aa, bb, cc, dd, X[12], 7); GG(dd, aa, bb, cc, X[ 0], 12); GG(cc, dd, aa, bb, X[ 9], 15); GG(bb, cc, dd, aa, X[ 5], 9); GG(aa, bb, cc, dd, X[ 2], 11); GG(dd, aa, bb, cc, X[14], 7); GG(cc, dd, aa, bb, X[11], 13); GG(bb, cc, dd, aa, X[ 8], 12); /* parallel round 2 */ HHH(aaa, bbb, ccc, ddd, X[ 6], 9); HHH(ddd, aaa, bbb, ccc, X[11], 13); HHH(ccc, ddd, aaa, bbb, X[ 3], 15); HHH(bbb, ccc, ddd, aaa, X[ 7], 7); HHH(aaa, bbb, ccc, ddd, X[ 0], 12); HHH(ddd, aaa, bbb, ccc, X[13], 8); HHH(ccc, ddd, aaa, bbb, X[ 5], 9); HHH(bbb, ccc, ddd, aaa, X[10], 11); HHH(aaa, bbb, ccc, ddd, X[14], 7); HHH(ddd, aaa, bbb, ccc, X[15], 7); HHH(ccc, ddd, aaa, bbb, X[ 8], 12); HHH(bbb, ccc, ddd, aaa, X[12], 7); HHH(aaa, bbb, ccc, ddd, X[ 4], 6); HHH(ddd, aaa, bbb, ccc, X[ 9], 15); HHH(ccc, ddd, aaa, bbb, X[ 1], 13); HHH(bbb, ccc, ddd, aaa, X[ 2], 11); tmp = bb; bb = bbb; bbb = tmp; /* round 3 */ HH(aa, bb, cc, dd, X[ 3], 11); HH(dd, aa, bb, cc, X[10], 13); HH(cc, dd, aa, bb, X[14], 6); HH(bb, cc, dd, aa, X[ 4], 7); HH(aa, bb, cc, dd, X[ 9], 14); HH(dd, aa, bb, cc, X[15], 9); HH(cc, dd, aa, bb, X[ 8], 13); HH(bb, cc, dd, aa, X[ 1], 15); HH(aa, bb, cc, dd, X[ 2], 14); HH(dd, aa, bb, cc, X[ 7], 8); HH(cc, dd, aa, bb, X[ 0], 13); HH(bb, cc, dd, aa, X[ 6], 6); HH(aa, bb, cc, dd, X[13], 5); HH(dd, aa, bb, cc, X[11], 12); HH(cc, dd, aa, bb, X[ 5], 7); HH(bb, cc, dd, aa, X[12], 5); /* parallel round 3 */ GGG(aaa, bbb, ccc, ddd, X[15], 9); GGG(ddd, aaa, bbb, ccc, X[ 5], 7); GGG(ccc, ddd, aaa, bbb, X[ 1], 15); GGG(bbb, ccc, ddd, aaa, X[ 3], 11); GGG(aaa, bbb, ccc, ddd, X[ 7], 8); GGG(ddd, aaa, bbb, ccc, X[14], 6); GGG(ccc, ddd, aaa, bbb, X[ 6], 6); GGG(bbb, ccc, ddd, aaa, X[ 9], 14); GGG(aaa, bbb, ccc, ddd, X[11], 12); GGG(ddd, aaa, bbb, ccc, X[ 8], 13); GGG(ccc, ddd, aaa, bbb, X[12], 5); GGG(bbb, ccc, ddd, aaa, X[ 2], 14); GGG(aaa, bbb, ccc, ddd, X[10], 13); GGG(ddd, aaa, bbb, ccc, X[ 0], 13); GGG(ccc, ddd, aaa, bbb, X[ 4], 7); GGG(bbb, ccc, ddd, aaa, X[13], 5); tmp = cc; cc = ccc; ccc = tmp; /* round 4 */ II(aa, bb, cc, dd, X[ 1], 11); II(dd, aa, bb, cc, X[ 9], 12); II(cc, dd, aa, bb, X[11], 14); II(bb, cc, dd, aa, X[10], 15); II(aa, bb, cc, dd, X[ 0], 14); II(dd, aa, bb, cc, X[ 8], 15); II(cc, dd, aa, bb, X[12], 9); II(bb, cc, dd, aa, X[ 4], 8); II(aa, bb, cc, dd, X[13], 9); II(dd, aa, bb, cc, X[ 3], 14); II(cc, dd, aa, bb, X[ 7], 5); II(bb, cc, dd, aa, X[15], 6); II(aa, bb, cc, dd, X[14], 8); II(dd, aa, bb, cc, X[ 5], 6); II(cc, dd, aa, bb, X[ 6], 5); II(bb, cc, dd, aa, X[ 2], 12); /* parallel round 4 */ FFF(aaa, bbb, ccc, ddd, X[ 8], 15); FFF(ddd, aaa, bbb, ccc, X[ 6], 5); FFF(ccc, ddd, aaa, bbb, X[ 4], 8); FFF(bbb, ccc, ddd, aaa, X[ 1], 11); FFF(aaa, bbb, ccc, ddd, X[ 3], 14); FFF(ddd, aaa, bbb, ccc, X[11], 14); FFF(ccc, ddd, aaa, bbb, X[15], 6); FFF(bbb, ccc, ddd, aaa, X[ 0], 14); FFF(aaa, bbb, ccc, ddd, X[ 5], 6); FFF(ddd, aaa, bbb, ccc, X[12], 9); FFF(ccc, ddd, aaa, bbb, X[ 2], 12); FFF(bbb, ccc, ddd, aaa, X[13], 9); FFF(aaa, bbb, ccc, ddd, X[ 9], 12); FFF(ddd, aaa, bbb, ccc, X[ 7], 5); FFF(ccc, ddd, aaa, bbb, X[10], 15); FFF(bbb, ccc, ddd, aaa, X[14], 8); tmp = dd; dd = ddd; ddd = tmp; /* combine results */ md->rmd256.state[0] += aa; md->rmd256.state[1] += bb; md->rmd256.state[2] += cc; md->rmd256.state[3] += dd; md->rmd256.state[4] += aaa; md->rmd256.state[5] += bbb; md->rmd256.state[6] += ccc; md->rmd256.state[7] += ddd; return CRYPT_OK; } #ifdef LTC_CLEAN_STACK static int rmd256_compress(hash_state *md, unsigned char *buf) { int err; err = _rmd256_compress(md, buf); burn_stack(sizeof(ulong32) * 25 + sizeof(int)); return err; } #endif /** Initialize the hash state @param md The hash state you wish to initialize @return CRYPT_OK if successful */ int rmd256_init(hash_state * md) { LTC_ARGCHK(md != NULL); md->rmd256.state[0] = 0x67452301UL; md->rmd256.state[1] = 0xefcdab89UL; md->rmd256.state[2] = 0x98badcfeUL; md->rmd256.state[3] = 0x10325476UL; md->rmd256.state[4] = 0x76543210UL; md->rmd256.state[5] = 0xfedcba98UL; md->rmd256.state[6] = 0x89abcdefUL; md->rmd256.state[7] = 0x01234567UL; md->rmd256.curlen = 0; md->rmd256.length = 0; return CRYPT_OK; } /** Process a block of memory though the hash @param md The hash state @param in The data to hash @param inlen The length of the data (octets) @return CRYPT_OK if successful */ HASH_PROCESS(rmd256_process, rmd256_compress, rmd256, 64) /** Terminate the hash to get the digest @param md The hash state @param out [out] The destination of the hash (16 bytes) @return CRYPT_OK if successful */ int rmd256_done(hash_state * md, unsigned char *out) { int i; LTC_ARGCHK(md != NULL); LTC_ARGCHK(out != NULL); if (md->rmd256.curlen >= sizeof(md->rmd256.buf)) { return CRYPT_INVALID_ARG; } /* increase the length of the message */ md->rmd256.length += md->rmd256.curlen * 8; /* append the '1' bit */ md->rmd256.buf[md->rmd256.curlen++] = (unsigned char)0x80; /* if the length is currently above 56 bytes we append zeros * then compress. Then we can fall back to padding zeros and length * encoding like normal. */ if (md->rmd256.curlen > 56) { while (md->rmd256.curlen < 64) { md->rmd256.buf[md->rmd256.curlen++] = (unsigned char)0; } rmd256_compress(md, md->rmd256.buf); md->rmd256.curlen = 0; } /* pad upto 56 bytes of zeroes */ while (md->rmd256.curlen < 56) { md->rmd256.buf[md->rmd256.curlen++] = (unsigned char)0; } /* store length */ STORE64L(md->rmd256.length, md->rmd256.buf+56); rmd256_compress(md, md->rmd256.buf); /* copy output */ for (i = 0; i < 8; i++) { STORE32L(md->rmd256.state[i], out+(4*i)); } #ifdef LTC_CLEAN_STACK zeromem(md, sizeof(hash_state)); #endif return CRYPT_OK; } /** Self-test the hash @return CRYPT_OK if successful, CRYPT_NOP if self-tests have been disabled */ int rmd256_test(void) { #ifndef LTC_TEST return CRYPT_NOP; #else static const struct { char *msg; unsigned char md[32]; } tests[] = { { "", { 0x02, 0xba, 0x4c, 0x4e, 0x5f, 0x8e, 0xcd, 0x18, 0x77, 0xfc, 0x52, 0xd6, 0x4d, 0x30, 0xe3, 0x7a, 0x2d, 0x97, 0x74, 0xfb, 0x1e, 0x5d, 0x02, 0x63, 0x80, 0xae, 0x01, 0x68, 0xe3, 0xc5, 0x52, 0x2d } }, { "a", { 0xf9, 0x33, 0x3e, 0x45, 0xd8, 0x57, 0xf5, 0xd9, 0x0a, 0x91, 0xba, 0xb7, 0x0a, 0x1e, 0xba, 0x0c, 0xfb, 0x1b, 0xe4, 0xb0, 0x78, 0x3c, 0x9a, 0xcf, 0xcd, 0x88, 0x3a, 0x91, 0x34, 0x69, 0x29, 0x25 } }, { "abc", { 0xaf, 0xbd, 0x6e, 0x22, 0x8b, 0x9d, 0x8c, 0xbb, 0xce, 0xf5, 0xca, 0x2d, 0x03, 0xe6, 0xdb, 0xa1, 0x0a, 0xc0, 0xbc, 0x7d, 0xcb, 0xe4, 0x68, 0x0e, 0x1e, 0x42, 0xd2, 0xe9, 0x75, 0x45, 0x9b, 0x65 } }, { "message digest", { 0x87, 0xe9, 0x71, 0x75, 0x9a, 0x1c, 0xe4, 0x7a, 0x51, 0x4d, 0x5c, 0x91, 0x4c, 0x39, 0x2c, 0x90, 0x18, 0xc7, 0xc4, 0x6b, 0xc1, 0x44, 0x65, 0x55, 0x4a, 0xfc, 0xdf, 0x54, 0xa5, 0x07, 0x0c, 0x0e } }, { "abcdefghijklmnopqrstuvwxyz", { 0x64, 0x9d, 0x30, 0x34, 0x75, 0x1e, 0xa2, 0x16, 0x77, 0x6b, 0xf9, 0xa1, 0x8a, 0xcc, 0x81, 0xbc, 0x78, 0x96, 0x11, 0x8a, 0x51, 0x97, 0x96, 0x87, 0x82, 0xdd, 0x1f, 0xd9, 0x7d, 0x8d, 0x51, 0x33 } }, { "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789", { 0x57, 0x40, 0xa4, 0x08, 0xac, 0x16, 0xb7, 0x20, 0xb8, 0x44, 0x24, 0xae, 0x93, 0x1c, 0xbb, 0x1f, 0xe3, 0x63, 0xd1, 0xd0, 0xbf, 0x40, 0x17, 0xf1, 0xa8, 0x9f, 0x7e, 0xa6, 0xde, 0x77, 0xa0, 0xb8 } } }; int x; unsigned char buf[32]; hash_state md; for (x = 0; x < (int)(sizeof(tests)/sizeof(tests[0])); x++) { rmd256_init(&md); rmd256_process(&md, (unsigned char *)tests[x].msg, strlen(tests[x].msg)); rmd256_done(&md, buf); if (XMEMCMP(buf, tests[x].md, 32) != 0) { #if 0 printf("Failed test %d\n", x); #endif return CRYPT_FAIL_TESTVECTOR; } } return CRYPT_OK; #endif } #endif