Mercurial > dropbear
view libtomcrypt/src/ciphers/skipjack.c @ 1463:a3479d0d7e79
Merge pull request #48 from DengkeDu/dengke/configure-add-variable-to-allow-openpty-check-cached
configure: add a variable to allow openpty check to be cached
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Thu, 25 Jan 2018 21:58:00 +0800 |
parents | f849a5ca2efc |
children | 6dba84798cd5 |
line wrap: on
line source
/* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, [email protected], http://libtom.org */ /** @file skipjack.c Skipjack Implementation by Tom St Denis */ #include "tomcrypt.h" #ifdef LTC_SKIPJACK const struct ltc_cipher_descriptor skipjack_desc = { "skipjack", 17, 10, 10, 8, 32, &skipjack_setup, &skipjack_ecb_encrypt, &skipjack_ecb_decrypt, &skipjack_test, &skipjack_done, &skipjack_keysize, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL }; static const unsigned char sbox[256] = { 0xa3,0xd7,0x09,0x83,0xf8,0x48,0xf6,0xf4,0xb3,0x21,0x15,0x78,0x99,0xb1,0xaf,0xf9, 0xe7,0x2d,0x4d,0x8a,0xce,0x4c,0xca,0x2e,0x52,0x95,0xd9,0x1e,0x4e,0x38,0x44,0x28, 0x0a,0xdf,0x02,0xa0,0x17,0xf1,0x60,0x68,0x12,0xb7,0x7a,0xc3,0xe9,0xfa,0x3d,0x53, 0x96,0x84,0x6b,0xba,0xf2,0x63,0x9a,0x19,0x7c,0xae,0xe5,0xf5,0xf7,0x16,0x6a,0xa2, 0x39,0xb6,0x7b,0x0f,0xc1,0x93,0x81,0x1b,0xee,0xb4,0x1a,0xea,0xd0,0x91,0x2f,0xb8, 0x55,0xb9,0xda,0x85,0x3f,0x41,0xbf,0xe0,0x5a,0x58,0x80,0x5f,0x66,0x0b,0xd8,0x90, 0x35,0xd5,0xc0,0xa7,0x33,0x06,0x65,0x69,0x45,0x00,0x94,0x56,0x6d,0x98,0x9b,0x76, 0x97,0xfc,0xb2,0xc2,0xb0,0xfe,0xdb,0x20,0xe1,0xeb,0xd6,0xe4,0xdd,0x47,0x4a,0x1d, 0x42,0xed,0x9e,0x6e,0x49,0x3c,0xcd,0x43,0x27,0xd2,0x07,0xd4,0xde,0xc7,0x67,0x18, 0x89,0xcb,0x30,0x1f,0x8d,0xc6,0x8f,0xaa,0xc8,0x74,0xdc,0xc9,0x5d,0x5c,0x31,0xa4, 0x70,0x88,0x61,0x2c,0x9f,0x0d,0x2b,0x87,0x50,0x82,0x54,0x64,0x26,0x7d,0x03,0x40, 0x34,0x4b,0x1c,0x73,0xd1,0xc4,0xfd,0x3b,0xcc,0xfb,0x7f,0xab,0xe6,0x3e,0x5b,0xa5, 0xad,0x04,0x23,0x9c,0x14,0x51,0x22,0xf0,0x29,0x79,0x71,0x7e,0xff,0x8c,0x0e,0xe2, 0x0c,0xef,0xbc,0x72,0x75,0x6f,0x37,0xa1,0xec,0xd3,0x8e,0x62,0x8b,0x86,0x10,0xe8, 0x08,0x77,0x11,0xbe,0x92,0x4f,0x24,0xc5,0x32,0x36,0x9d,0xcf,0xf3,0xa6,0xbb,0xac, 0x5e,0x6c,0xa9,0x13,0x57,0x25,0xb5,0xe3,0xbd,0xa8,0x3a,0x01,0x05,0x59,0x2a,0x46 }; /* simple x + 1 (mod 10) in one step. */ static const int keystep[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 }; /* simple x - 1 (mod 10) in one step */ static const int ikeystep[] = { 9, 0, 1, 2, 3, 4, 5, 6, 7, 8 }; /** Initialize the Skipjack block cipher @param key The symmetric key you wish to pass @param keylen The key length in bytes @param num_rounds The number of rounds desired (0 for default) @param skey The key in as scheduled by this function. @return CRYPT_OK if successful */ int skipjack_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey) { int x; LTC_ARGCHK(key != NULL); LTC_ARGCHK(skey != NULL); if (keylen != 10) { return CRYPT_INVALID_KEYSIZE; } if (num_rounds != 32 && num_rounds != 0) { return CRYPT_INVALID_ROUNDS; } /* make sure the key is in range for platforms where CHAR_BIT != 8 */ for (x = 0; x < 10; x++) { skey->skipjack.key[x] = key[x] & 255; } return CRYPT_OK; } #define RULE_A \ tmp = g_func(w1, &kp, skey->skipjack.key); \ w1 = tmp ^ w4 ^ x; \ w4 = w3; w3 = w2; \ w2 = tmp; #define RULE_B \ tmp = g_func(w1, &kp, skey->skipjack.key); \ tmp1 = w4; w4 = w3; \ w3 = w1 ^ w2 ^ x; \ w1 = tmp1; w2 = tmp; #define RULE_A1 \ tmp = w1 ^ w2 ^ x; \ w1 = ig_func(w2, &kp, skey->skipjack.key); \ w2 = w3; w3 = w4; w4 = tmp; #define RULE_B1 \ tmp = ig_func(w2, &kp, skey->skipjack.key); \ w2 = tmp ^ w3 ^ x; \ w3 = w4; w4 = w1; w1 = tmp; static unsigned g_func(unsigned w, int *kp, unsigned char *key) { unsigned char g1,g2; g1 = (w >> 8) & 255; g2 = w & 255; g1 ^= sbox[g2^key[*kp]]; *kp = keystep[*kp]; g2 ^= sbox[g1^key[*kp]]; *kp = keystep[*kp]; g1 ^= sbox[g2^key[*kp]]; *kp = keystep[*kp]; g2 ^= sbox[g1^key[*kp]]; *kp = keystep[*kp]; return ((unsigned)g1<<8)|(unsigned)g2; } static unsigned ig_func(unsigned w, int *kp, unsigned char *key) { unsigned char g1,g2; g1 = (w >> 8) & 255; g2 = w & 255; *kp = ikeystep[*kp]; g2 ^= sbox[g1^key[*kp]]; *kp = ikeystep[*kp]; g1 ^= sbox[g2^key[*kp]]; *kp = ikeystep[*kp]; g2 ^= sbox[g1^key[*kp]]; *kp = ikeystep[*kp]; g1 ^= sbox[g2^key[*kp]]; return ((unsigned)g1<<8)|(unsigned)g2; } /** Encrypts a block of text with Skipjack @param pt The input plaintext (8 bytes) @param ct The output ciphertext (8 bytes) @param skey The key as scheduled @return CRYPT_OK if successful */ #ifdef LTC_CLEAN_STACK static int _skipjack_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey) #else int skipjack_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey) #endif { unsigned w1,w2,w3,w4,tmp,tmp1; int x, kp; LTC_ARGCHK(pt != NULL); LTC_ARGCHK(ct != NULL); LTC_ARGCHK(skey != NULL); /* load block */ w1 = ((unsigned)pt[0]<<8)|pt[1]; w2 = ((unsigned)pt[2]<<8)|pt[3]; w3 = ((unsigned)pt[4]<<8)|pt[5]; w4 = ((unsigned)pt[6]<<8)|pt[7]; /* 8 rounds of RULE A */ for (x = 1, kp = 0; x < 9; x++) { RULE_A; } /* 8 rounds of RULE B */ for (; x < 17; x++) { RULE_B; } /* 8 rounds of RULE A */ for (; x < 25; x++) { RULE_A; } /* 8 rounds of RULE B */ for (; x < 33; x++) { RULE_B; } /* store block */ ct[0] = (w1>>8)&255; ct[1] = w1&255; ct[2] = (w2>>8)&255; ct[3] = w2&255; ct[4] = (w3>>8)&255; ct[5] = w3&255; ct[6] = (w4>>8)&255; ct[7] = w4&255; return CRYPT_OK; } #ifdef LTC_CLEAN_STACK int skipjack_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey) { int err = _skipjack_ecb_encrypt(pt, ct, skey); burn_stack(sizeof(unsigned) * 8 + sizeof(int) * 2); return err; } #endif /** Decrypts a block of text with Skipjack @param ct The input ciphertext (8 bytes) @param pt The output plaintext (8 bytes) @param skey The key as scheduled @return CRYPT_OK if successful */ #ifdef LTC_CLEAN_STACK static int _skipjack_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey) #else int skipjack_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey) #endif { unsigned w1,w2,w3,w4,tmp; int x, kp; LTC_ARGCHK(pt != NULL); LTC_ARGCHK(ct != NULL); LTC_ARGCHK(skey != NULL); /* load block */ w1 = ((unsigned)ct[0]<<8)|ct[1]; w2 = ((unsigned)ct[2]<<8)|ct[3]; w3 = ((unsigned)ct[4]<<8)|ct[5]; w4 = ((unsigned)ct[6]<<8)|ct[7]; /* 8 rounds of RULE B^-1 Note the value "kp = 8" comes from "kp = (32 * 4) mod 10" where 32*4 is 128 which mod 10 is 8 */ for (x = 32, kp = 8; x > 24; x--) { RULE_B1; } /* 8 rounds of RULE A^-1 */ for (; x > 16; x--) { RULE_A1; } /* 8 rounds of RULE B^-1 */ for (; x > 8; x--) { RULE_B1; } /* 8 rounds of RULE A^-1 */ for (; x > 0; x--) { RULE_A1; } /* store block */ pt[0] = (w1>>8)&255; pt[1] = w1&255; pt[2] = (w2>>8)&255; pt[3] = w2&255; pt[4] = (w3>>8)&255; pt[5] = w3&255; pt[6] = (w4>>8)&255; pt[7] = w4&255; return CRYPT_OK; } #ifdef LTC_CLEAN_STACK int skipjack_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey) { int err = _skipjack_ecb_decrypt(ct, pt, skey); burn_stack(sizeof(unsigned) * 7 + sizeof(int) * 2); return err; } #endif /** Performs a self-test of the Skipjack block cipher @return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled */ int skipjack_test(void) { #ifndef LTC_TEST return CRYPT_NOP; #else static const struct { unsigned char key[10], pt[8], ct[8]; } tests[] = { { { 0x00, 0x99, 0x88, 0x77, 0x66, 0x55, 0x44, 0x33, 0x22, 0x11 }, { 0x33, 0x22, 0x11, 0x00, 0xdd, 0xcc, 0xbb, 0xaa }, { 0x25, 0x87, 0xca, 0xe2, 0x7a, 0x12, 0xd3, 0x00 } } }; unsigned char buf[2][8]; int x, y, err; symmetric_key key; for (x = 0; x < (int)(sizeof(tests) / sizeof(tests[0])); x++) { /* setup key */ if ((err = skipjack_setup(tests[x].key, 10, 0, &key)) != CRYPT_OK) { return err; } /* encrypt and decrypt */ skipjack_ecb_encrypt(tests[x].pt, buf[0], &key); skipjack_ecb_decrypt(buf[0], buf[1], &key); /* compare */ if (XMEMCMP(buf[0], tests[x].ct, 8) != 0 || XMEMCMP(buf[1], tests[x].pt, 8) != 0) { return CRYPT_FAIL_TESTVECTOR; } /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */ for (y = 0; y < 8; y++) buf[0][y] = 0; for (y = 0; y < 1000; y++) skipjack_ecb_encrypt(buf[0], buf[0], &key); for (y = 0; y < 1000; y++) skipjack_ecb_decrypt(buf[0], buf[0], &key); for (y = 0; y < 8; y++) if (buf[0][y] != 0) return CRYPT_FAIL_TESTVECTOR; } return CRYPT_OK; #endif } /** Terminate the context @param skey The scheduled key */ void skipjack_done(symmetric_key *skey) { } /** Gets suitable key size @param keysize [in/out] The length of the recommended key (in bytes). This function will store the suitable size back in this variable. @return CRYPT_OK if the input key size is acceptable. */ int skipjack_keysize(int *keysize) { LTC_ARGCHK(keysize != NULL); if (*keysize < 10) { return CRYPT_INVALID_KEYSIZE; } else if (*keysize > 10) { *keysize = 10; } return CRYPT_OK; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */