Mercurial > dropbear
view libtommath/bn_mp_prime_miller_rabin.c @ 1156:a8f4dade70e5
avoid getpass when not used
some systems (like android's bionic) do not provide getpass. you can
disable ENABLE_CLI_PASSWORD_AUTH & ENABLE_CLI_INTERACT_AUTH to avoid
its use (and rely on pubkey auth), but the link still fails because
the support file calls getpass. do not define this func if both of
those auth methods are not used.
author | Mike Frysinger <vapier@gentoo.org> |
---|---|
date | Wed, 21 Oct 2015 22:39:55 +0800 |
parents | 5ff8218bcee9 |
children | 60fc6476e044 |
line wrap: on
line source
#include <tommath.h> #ifdef BN_MP_PRIME_MILLER_RABIN_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, [email protected], http://math.libtomcrypt.com */ /* Miller-Rabin test of "a" to the base of "b" as described in * HAC pp. 139 Algorithm 4.24 * * Sets result to 0 if definitely composite or 1 if probably prime. * Randomly the chance of error is no more than 1/4 and often * very much lower. */ int mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result) { mp_int n1, y, r; int s, j, err; /* default */ *result = MP_NO; /* ensure b > 1 */ if (mp_cmp_d(b, 1) != MP_GT) { return MP_VAL; } /* get n1 = a - 1 */ if ((err = mp_init_copy (&n1, a)) != MP_OKAY) { return err; } if ((err = mp_sub_d (&n1, 1, &n1)) != MP_OKAY) { goto LBL_N1; } /* set 2**s * r = n1 */ if ((err = mp_init_copy (&r, &n1)) != MP_OKAY) { goto LBL_N1; } /* count the number of least significant bits * which are zero */ s = mp_cnt_lsb(&r); /* now divide n - 1 by 2**s */ if ((err = mp_div_2d (&r, s, &r, NULL)) != MP_OKAY) { goto LBL_R; } /* compute y = b**r mod a */ if ((err = mp_init (&y)) != MP_OKAY) { goto LBL_R; } if ((err = mp_exptmod (b, &r, a, &y)) != MP_OKAY) { goto LBL_Y; } /* if y != 1 and y != n1 do */ if (mp_cmp_d (&y, 1) != MP_EQ && mp_cmp (&y, &n1) != MP_EQ) { j = 1; /* while j <= s-1 and y != n1 */ while ((j <= (s - 1)) && mp_cmp (&y, &n1) != MP_EQ) { if ((err = mp_sqrmod (&y, a, &y)) != MP_OKAY) { goto LBL_Y; } /* if y == 1 then composite */ if (mp_cmp_d (&y, 1) == MP_EQ) { goto LBL_Y; } ++j; } /* if y != n1 then composite */ if (mp_cmp (&y, &n1) != MP_EQ) { goto LBL_Y; } } /* probably prime now */ *result = MP_YES; LBL_Y:mp_clear (&y); LBL_R:mp_clear (&r); LBL_N1:mp_clear (&n1); return err; } #endif /* $Source: /cvs/libtom/libtommath/bn_mp_prime_miller_rabin.c,v $ */ /* $Revision: 1.3 $ */ /* $Date: 2006/03/31 14:18:44 $ */