Mercurial > dropbear
view libtomcrypt/testprof/x86_prof.c @ 607:aa2f51a6b81d DROPBEAR_0.53.1
Update changelog for 0.53.1
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Wed, 02 Mar 2011 13:23:27 +0000 |
parents | 0cbe8f6dbf9e |
children | f849a5ca2efc |
line wrap: on
line source
#include <tomcrypt_test.h> prng_state yarrow_prng; struct list results[100]; int no_results; int sorter(const void *a, const void *b) { const struct list *A, *B; A = a; B = b; if (A->avg < B->avg) return -1; if (A->avg > B->avg) return 1; return 0; } void tally_results(int type) { int x; /* qsort the results */ qsort(results, no_results, sizeof(struct list), &sorter); fprintf(stderr, "\n"); if (type == 0) { for (x = 0; x < no_results; x++) { fprintf(stderr, "%-20s: Schedule at %6lu\n", cipher_descriptor[results[x].id].name, (unsigned long)results[x].spd1); } } else if (type == 1) { for (x = 0; x < no_results; x++) { printf ("%-20s[%3d]: Encrypt at %5lu, Decrypt at %5lu\n", cipher_descriptor[results[x].id].name, cipher_descriptor[results[x].id].ID, results[x].spd1, results[x].spd2); } } else { for (x = 0; x < no_results; x++) { printf ("%-20s: Process at %5lu\n", hash_descriptor[results[x].id].name, results[x].spd1 / 1000); } } } /* RDTSC from Scott Duplichan */ ulong64 rdtsc (void) { #if defined __GNUC__ && !defined(LTC_NO_ASM) #ifdef INTEL_CC ulong64 a; asm ( " rdtsc ":"=A"(a)); return a; #elif defined(__i386__) || defined(__x86_64__) ulong64 a; asm __volatile__ ("rdtsc\nmovl %%eax,(%0)\nmovl %%edx,4(%0)\n"::"r"(&a):"%eax","%edx"); return a; #elif defined(LTC_PPC32) || defined(TFM_PPC32) unsigned long a, b; __asm__ __volatile__ ("mftbu %1 \nmftb %0\n":"=r"(a), "=r"(b)); return (((ulong64)b) << 32ULL) | ((ulong64)a); #elif defined(__ia64__) /* gcc-IA64 version */ unsigned long result; __asm__ __volatile__("mov %0=ar.itc" : "=r"(result) :: "memory"); while (__builtin_expect ((int) result == -1, 0)) __asm__ __volatile__("mov %0=ar.itc" : "=r"(result) :: "memory"); return result; #elif defined(__sparc__) #if defined(__arch64__) ulong64 a; asm volatile("rd %%tick,%0" : "=r" (a)); return a; #else register unsigned long x, y; __asm__ __volatile__ ("rd %%tick, %0; clruw %0, %1; srlx %0, 32, %0" : "=r" (x), "=r" (y) : "0" (x), "1" (y)); return ((unsigned long long) x << 32) | y; #endif #else return XCLOCK(); #endif /* Microsoft and Intel Windows compilers */ #elif defined _M_IX86 && !defined(LTC_NO_ASM) __asm rdtsc #elif defined _M_AMD64 && !defined(LTC_NO_ASM) return __rdtsc (); #elif defined _M_IA64 && !defined(LTC_NO_ASM) #if defined __INTEL_COMPILER #include <ia64intrin.h> #endif return __getReg (3116); #else return XCLOCK(); #endif } static ulong64 timer, skew = 0; void t_start(void) { timer = rdtsc(); } ulong64 t_read(void) { return rdtsc() - timer; } void init_timer(void) { ulong64 c1, c2, t1, t2, t3; unsigned long y1; c1 = c2 = (ulong64)-1; for (y1 = 0; y1 < TIMES*100; y1++) { t_start(); t1 = t_read(); t3 = t_read(); t2 = (t_read() - t1)>>1; c1 = (t1 > c1) ? t1 : c1; c2 = (t2 > c2) ? t2 : c2; } skew = c2 - c1; fprintf(stderr, "Clock Skew: %lu\n", (unsigned long)skew); } void reg_algs(void) { int err; #ifdef RIJNDAEL register_cipher (&aes_desc); #endif #ifdef BLOWFISH register_cipher (&blowfish_desc); #endif #ifdef XTEA register_cipher (&xtea_desc); #endif #ifdef RC5 register_cipher (&rc5_desc); #endif #ifdef RC6 register_cipher (&rc6_desc); #endif #ifdef SAFERP register_cipher (&saferp_desc); #endif #ifdef TWOFISH register_cipher (&twofish_desc); #endif #ifdef SAFER register_cipher (&safer_k64_desc); register_cipher (&safer_sk64_desc); register_cipher (&safer_k128_desc); register_cipher (&safer_sk128_desc); #endif #ifdef RC2 register_cipher (&rc2_desc); #endif #ifdef DES register_cipher (&des_desc); register_cipher (&des3_desc); #endif #ifdef CAST5 register_cipher (&cast5_desc); #endif #ifdef NOEKEON register_cipher (&noekeon_desc); #endif #ifdef SKIPJACK register_cipher (&skipjack_desc); #endif #ifdef KHAZAD register_cipher (&khazad_desc); #endif #ifdef ANUBIS register_cipher (&anubis_desc); #endif #ifdef KSEED register_cipher (&kseed_desc); #endif #ifdef LTC_KASUMI register_cipher (&kasumi_desc); #endif #ifdef TIGER register_hash (&tiger_desc); #endif #ifdef MD2 register_hash (&md2_desc); #endif #ifdef MD4 register_hash (&md4_desc); #endif #ifdef MD5 register_hash (&md5_desc); #endif #ifdef SHA1 register_hash (&sha1_desc); #endif #ifdef SHA224 register_hash (&sha224_desc); #endif #ifdef SHA256 register_hash (&sha256_desc); #endif #ifdef SHA384 register_hash (&sha384_desc); #endif #ifdef SHA512 register_hash (&sha512_desc); #endif #ifdef RIPEMD128 register_hash (&rmd128_desc); #endif #ifdef RIPEMD160 register_hash (&rmd160_desc); #endif #ifdef RIPEMD256 register_hash (&rmd256_desc); #endif #ifdef RIPEMD320 register_hash (&rmd320_desc); #endif #ifdef WHIRLPOOL register_hash (&whirlpool_desc); #endif #ifdef CHC_HASH register_hash(&chc_desc); if ((err = chc_register(register_cipher(&aes_desc))) != CRYPT_OK) { fprintf(stderr, "chc_register error: %s\n", error_to_string(err)); exit(EXIT_FAILURE); } #endif #ifndef YARROW #error This demo requires Yarrow. #endif register_prng(&yarrow_desc); #ifdef FORTUNA register_prng(&fortuna_desc); #endif #ifdef RC4 register_prng(&rc4_desc); #endif #ifdef SOBER128 register_prng(&sober128_desc); #endif if ((err = rng_make_prng(128, find_prng("yarrow"), &yarrow_prng, NULL)) != CRYPT_OK) { fprintf(stderr, "rng_make_prng failed: %s\n", error_to_string(err)); exit(EXIT_FAILURE); } } int time_keysched(void) { unsigned long x, y1; ulong64 t1, c1; symmetric_key skey; int kl; int (*func) (const unsigned char *, int , int , symmetric_key *); unsigned char key[MAXBLOCKSIZE]; fprintf(stderr, "\n\nKey Schedule Time Trials for the Symmetric Ciphers:\n(Times are cycles per key)\n"); no_results = 0; for (x = 0; cipher_descriptor[x].name != NULL; x++) { #define DO1(k) func(k, kl, 0, &skey); func = cipher_descriptor[x].setup; kl = cipher_descriptor[x].min_key_length; c1 = (ulong64)-1; for (y1 = 0; y1 < KTIMES; y1++) { yarrow_read(key, kl, &yarrow_prng); t_start(); DO1(key); t1 = t_read(); c1 = (t1 > c1) ? c1 : t1; } t1 = c1 - skew; results[no_results].spd1 = results[no_results].avg = t1; results[no_results++].id = x; fprintf(stderr, "."); fflush(stdout); #undef DO1 } tally_results(0); return 0; } int time_cipher(void) { unsigned long x, y1; ulong64 t1, t2, c1, c2, a1, a2; symmetric_ECB ecb; unsigned char key[MAXBLOCKSIZE], pt[4096]; int err; fprintf(stderr, "\n\nECB Time Trials for the Symmetric Ciphers:\n"); no_results = 0; for (x = 0; cipher_descriptor[x].name != NULL; x++) { ecb_start(x, key, cipher_descriptor[x].min_key_length, 0, &ecb); /* sanity check on cipher */ if ((err = cipher_descriptor[x].test()) != CRYPT_OK) { fprintf(stderr, "\n\nERROR: Cipher %s failed self-test %s\n", cipher_descriptor[x].name, error_to_string(err)); exit(EXIT_FAILURE); } #define DO1 ecb_encrypt(pt, pt, sizeof(pt), &ecb); #define DO2 DO1 DO1 c1 = c2 = (ulong64)-1; for (y1 = 0; y1 < 100; y1++) { t_start(); DO1; t1 = t_read(); DO2; t2 = t_read(); t2 -= t1; c1 = (t1 > c1 ? c1 : t1); c2 = (t2 > c2 ? c2 : t2); } a1 = c2 - c1 - skew; #undef DO1 #undef DO2 #define DO1 ecb_decrypt(pt, pt, sizeof(pt), &ecb); #define DO2 DO1 DO1 c1 = c2 = (ulong64)-1; for (y1 = 0; y1 < 100; y1++) { t_start(); DO1; t1 = t_read(); DO2; t2 = t_read(); t2 -= t1; c1 = (t1 > c1 ? c1 : t1); c2 = (t2 > c2 ? c2 : t2); } a2 = c2 - c1 - skew; ecb_done(&ecb); results[no_results].id = x; results[no_results].spd1 = a1/(sizeof(pt)/cipher_descriptor[x].block_length); results[no_results].spd2 = a2/(sizeof(pt)/cipher_descriptor[x].block_length); results[no_results].avg = (results[no_results].spd1 + results[no_results].spd2+1)/2; ++no_results; fprintf(stderr, "."); fflush(stdout); #undef DO2 #undef DO1 } tally_results(1); return 0; } #ifdef LTC_CBC_MODE int time_cipher2(void) { unsigned long x, y1; ulong64 t1, t2, c1, c2, a1, a2; symmetric_CBC cbc; unsigned char key[MAXBLOCKSIZE], pt[4096]; int err; fprintf(stderr, "\n\nCBC Time Trials for the Symmetric Ciphers:\n"); no_results = 0; for (x = 0; cipher_descriptor[x].name != NULL; x++) { cbc_start(x, pt, key, cipher_descriptor[x].min_key_length, 0, &cbc); /* sanity check on cipher */ if ((err = cipher_descriptor[x].test()) != CRYPT_OK) { fprintf(stderr, "\n\nERROR: Cipher %s failed self-test %s\n", cipher_descriptor[x].name, error_to_string(err)); exit(EXIT_FAILURE); } #define DO1 cbc_encrypt(pt, pt, sizeof(pt), &cbc); #define DO2 DO1 DO1 c1 = c2 = (ulong64)-1; for (y1 = 0; y1 < 100; y1++) { t_start(); DO1; t1 = t_read(); DO2; t2 = t_read(); t2 -= t1; c1 = (t1 > c1 ? c1 : t1); c2 = (t2 > c2 ? c2 : t2); } a1 = c2 - c1 - skew; #undef DO1 #undef DO2 #define DO1 cbc_decrypt(pt, pt, sizeof(pt), &cbc); #define DO2 DO1 DO1 c1 = c2 = (ulong64)-1; for (y1 = 0; y1 < 100; y1++) { t_start(); DO1; t1 = t_read(); DO2; t2 = t_read(); t2 -= t1; c1 = (t1 > c1 ? c1 : t1); c2 = (t2 > c2 ? c2 : t2); } a2 = c2 - c1 - skew; cbc_done(&cbc); results[no_results].id = x; results[no_results].spd1 = a1/(sizeof(pt)/cipher_descriptor[x].block_length); results[no_results].spd2 = a2/(sizeof(pt)/cipher_descriptor[x].block_length); results[no_results].avg = (results[no_results].spd1 + results[no_results].spd2+1)/2; ++no_results; fprintf(stderr, "."); fflush(stdout); #undef DO2 #undef DO1 } tally_results(1); return 0; } #else int time_cipher2(void) { fprintf(stderr, "NO CBC\n"); return 0; } #endif #ifdef LTC_CTR_MODE int time_cipher3(void) { unsigned long x, y1; ulong64 t1, t2, c1, c2, a1, a2; symmetric_CTR ctr; unsigned char key[MAXBLOCKSIZE], pt[4096]; int err; fprintf(stderr, "\n\nCTR Time Trials for the Symmetric Ciphers:\n"); no_results = 0; for (x = 0; cipher_descriptor[x].name != NULL; x++) { ctr_start(x, pt, key, cipher_descriptor[x].min_key_length, 0, CTR_COUNTER_LITTLE_ENDIAN, &ctr); /* sanity check on cipher */ if ((err = cipher_descriptor[x].test()) != CRYPT_OK) { fprintf(stderr, "\n\nERROR: Cipher %s failed self-test %s\n", cipher_descriptor[x].name, error_to_string(err)); exit(EXIT_FAILURE); } #define DO1 ctr_encrypt(pt, pt, sizeof(pt), &ctr); #define DO2 DO1 DO1 c1 = c2 = (ulong64)-1; for (y1 = 0; y1 < 100; y1++) { t_start(); DO1; t1 = t_read(); DO2; t2 = t_read(); t2 -= t1; c1 = (t1 > c1 ? c1 : t1); c2 = (t2 > c2 ? c2 : t2); } a1 = c2 - c1 - skew; #undef DO1 #undef DO2 #define DO1 ctr_decrypt(pt, pt, sizeof(pt), &ctr); #define DO2 DO1 DO1 c1 = c2 = (ulong64)-1; for (y1 = 0; y1 < 100; y1++) { t_start(); DO1; t1 = t_read(); DO2; t2 = t_read(); t2 -= t1; c1 = (t1 > c1 ? c1 : t1); c2 = (t2 > c2 ? c2 : t2); } a2 = c2 - c1 - skew; ctr_done(&ctr); results[no_results].id = x; results[no_results].spd1 = a1/(sizeof(pt)/cipher_descriptor[x].block_length); results[no_results].spd2 = a2/(sizeof(pt)/cipher_descriptor[x].block_length); results[no_results].avg = (results[no_results].spd1 + results[no_results].spd2+1)/2; ++no_results; fprintf(stderr, "."); fflush(stdout); #undef DO2 #undef DO1 } tally_results(1); return 0; } #else int time_cipher3(void) { fprintf(stderr, "NO CTR\n"); return 0; } #endif #ifdef LTC_LRW_MODE int time_cipher4(void) { unsigned long x, y1; ulong64 t1, t2, c1, c2, a1, a2; symmetric_LRW lrw; unsigned char key[MAXBLOCKSIZE], pt[4096]; int err; fprintf(stderr, "\n\nLRW Time Trials for the Symmetric Ciphers:\n"); no_results = 0; for (x = 0; cipher_descriptor[x].name != NULL; x++) { if (cipher_descriptor[x].block_length != 16) continue; lrw_start(x, pt, key, cipher_descriptor[x].min_key_length, key, 0, &lrw); /* sanity check on cipher */ if ((err = cipher_descriptor[x].test()) != CRYPT_OK) { fprintf(stderr, "\n\nERROR: Cipher %s failed self-test %s\n", cipher_descriptor[x].name, error_to_string(err)); exit(EXIT_FAILURE); } #define DO1 lrw_encrypt(pt, pt, sizeof(pt), &lrw); #define DO2 DO1 DO1 c1 = c2 = (ulong64)-1; for (y1 = 0; y1 < 100; y1++) { t_start(); DO1; t1 = t_read(); DO2; t2 = t_read(); t2 -= t1; c1 = (t1 > c1 ? c1 : t1); c2 = (t2 > c2 ? c2 : t2); } a1 = c2 - c1 - skew; #undef DO1 #undef DO2 #define DO1 lrw_decrypt(pt, pt, sizeof(pt), &lrw); #define DO2 DO1 DO1 c1 = c2 = (ulong64)-1; for (y1 = 0; y1 < 100; y1++) { t_start(); DO1; t1 = t_read(); DO2; t2 = t_read(); t2 -= t1; c1 = (t1 > c1 ? c1 : t1); c2 = (t2 > c2 ? c2 : t2); } a2 = c2 - c1 - skew; lrw_done(&lrw); results[no_results].id = x; results[no_results].spd1 = a1/(sizeof(pt)/cipher_descriptor[x].block_length); results[no_results].spd2 = a2/(sizeof(pt)/cipher_descriptor[x].block_length); results[no_results].avg = (results[no_results].spd1 + results[no_results].spd2+1)/2; ++no_results; fprintf(stderr, "."); fflush(stdout); #undef DO2 #undef DO1 } tally_results(1); return 0; } #else int time_cipher4(void) { fprintf(stderr, "NO LRW\n"); return 0; } #endif int time_hash(void) { unsigned long x, y1, len; ulong64 t1, t2, c1, c2; hash_state md; int (*func)(hash_state *, const unsigned char *, unsigned long), err; unsigned char pt[MAXBLOCKSIZE]; fprintf(stderr, "\n\nHASH Time Trials for:\n"); no_results = 0; for (x = 0; hash_descriptor[x].name != NULL; x++) { /* sanity check on hash */ if ((err = hash_descriptor[x].test()) != CRYPT_OK) { fprintf(stderr, "\n\nERROR: Hash %s failed self-test %s\n", hash_descriptor[x].name, error_to_string(err)); exit(EXIT_FAILURE); } hash_descriptor[x].init(&md); #define DO1 func(&md,pt,len); #define DO2 DO1 DO1 func = hash_descriptor[x].process; len = hash_descriptor[x].blocksize; c1 = c2 = (ulong64)-1; for (y1 = 0; y1 < TIMES; y1++) { t_start(); DO1; t1 = t_read(); DO2; t2 = t_read() - t1; c1 = (t1 > c1) ? c1 : t1; c2 = (t2 > c2) ? c2 : t2; } t1 = c2 - c1 - skew; t1 = ((t1 * CONST64(1000))) / ((ulong64)hash_descriptor[x].blocksize); results[no_results].id = x; results[no_results].spd1 = results[no_results].avg = t1; ++no_results; fprintf(stderr, "."); fflush(stdout); #undef DO2 #undef DO1 } tally_results(2); return 0; } #undef MPI /*#warning you need an mp_rand!!!*/ #ifdef MPI void time_mult(void) { ulong64 t1, t2; unsigned long x, y; void *a, *b, *c; fprintf(stderr, "Timing Multiplying:\n"); mp_init_multi(&a,&b,&c,NULL); for (x = 128/DIGIT_BIT; x <= 1536/DIGIT_BIT; x += 128/DIGIT_BIT) { mp_rand(&a, x); mp_rand(&b, x); #define DO1 mp_mul(&a, &b, &c); #define DO2 DO1; DO1; t2 = -1; for (y = 0; y < TIMES; y++) { t_start(); t1 = t_read(); DO2; t1 = (t_read() - t1)>>1; if (t1 < t2) t2 = t1; } fprintf(stderr, "%4lu bits: %9llu cycles\n", x*DIGIT_BIT, t2); } mp_clear_multi(&a,&b,&c,NULL); #undef DO1 #undef DO2 } void time_sqr(void) { ulong64 t1, t2; unsigned long x, y; mp_int a, b; fprintf(stderr, "Timing Squaring:\n"); mp_init_multi(&a,&b,NULL); for (x = 128/DIGIT_BIT; x <= 1536/DIGIT_BIT; x += 128/DIGIT_BIT) { mp_rand(&a, x); #define DO1 mp_sqr(&a, &b); #define DO2 DO1; DO1; t2 = -1; for (y = 0; y < TIMES; y++) { t_start(); t1 = t_read(); DO2; t1 = (t_read() - t1)>>1; if (t1 < t2) t2 = t1; } fprintf(stderr, "%4lu bits: %9llu cycles\n", x*DIGIT_BIT, t2); } mp_clear_multi(&a,&b,NULL); #undef DO1 #undef DO2 } #else void time_mult(void) { fprintf(stderr, "NO MULT\n"); } void time_sqr(void) { fprintf(stderr, "NO SQR\n"); } #endif void time_prng(void) { ulong64 t1, t2; unsigned char buf[4096]; prng_state tprng; unsigned long x, y; int err; fprintf(stderr, "Timing PRNGs (cycles/byte output, cycles add_entropy (32 bytes) :\n"); for (x = 0; prng_descriptor[x].name != NULL; x++) { /* sanity check on prng */ if ((err = prng_descriptor[x].test()) != CRYPT_OK) { fprintf(stderr, "\n\nERROR: PRNG %s failed self-test %s\n", prng_descriptor[x].name, error_to_string(err)); exit(EXIT_FAILURE); } prng_descriptor[x].start(&tprng); zeromem(buf, 256); prng_descriptor[x].add_entropy(buf, 256, &tprng); prng_descriptor[x].ready(&tprng); t2 = -1; #define DO1 if (prng_descriptor[x].read(buf, 4096, &tprng) != 4096) { fprintf(stderr, "\n\nERROR READ != 4096\n\n"); exit(EXIT_FAILURE); } #define DO2 DO1 DO1 for (y = 0; y < 10000; y++) { t_start(); t1 = t_read(); DO2; t1 = (t_read() - t1)>>1; if (t1 < t2) t2 = t1; } fprintf(stderr, "%20s: %5llu ", prng_descriptor[x].name, t2>>12); #undef DO2 #undef DO1 #define DO1 prng_descriptor[x].start(&tprng); prng_descriptor[x].add_entropy(buf, 32, &tprng); prng_descriptor[x].ready(&tprng); prng_descriptor[x].done(&tprng); #define DO2 DO1 DO1 for (y = 0; y < 10000; y++) { t_start(); t1 = t_read(); DO2; t1 = (t_read() - t1)>>1; if (t1 < t2) t2 = t1; } fprintf(stderr, "%5llu\n", t2); #undef DO2 #undef DO1 } } #ifdef MDSA /* time various DSA operations */ void time_dsa(void) { dsa_key key; ulong64 t1, t2; unsigned long x, y; int err; static const struct { int group, modulus; } groups[] = { { 20, 96 }, { 20, 128 }, { 24, 192 }, { 28, 256 }, { 32, 512 } }; for (x = 0; x < (sizeof(groups)/sizeof(groups[0])); x++) { t2 = 0; for (y = 0; y < 4; y++) { t_start(); t1 = t_read(); if ((err = dsa_make_key(&yarrow_prng, find_prng("yarrow"), groups[x].group, groups[x].modulus, &key)) != CRYPT_OK) { fprintf(stderr, "\n\ndsa_make_key says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK)); exit(EXIT_FAILURE); } t1 = t_read() - t1; t2 += t1; #ifdef LTC_PROFILE t2 <<= 2; break; #endif if (y < 3) { dsa_free(&key); } } t2 >>= 2; fprintf(stderr, "DSA-(%lu, %lu) make_key took %15llu cycles\n", (unsigned long)groups[x].group*8, (unsigned long)groups[x].modulus*8, t2); } } #endif #ifdef MRSA /* time various RSA operations */ void time_rsa(void) { rsa_key key; ulong64 t1, t2; unsigned char buf[2][2048]; unsigned long x, y, z, zzz; int err, zz, stat; for (x = 1024; x <= 2048; x += 256) { t2 = 0; for (y = 0; y < 4; y++) { t_start(); t1 = t_read(); if ((err = rsa_make_key(&yarrow_prng, find_prng("yarrow"), x/8, 65537, &key)) != CRYPT_OK) { fprintf(stderr, "\n\nrsa_make_key says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK)); exit(EXIT_FAILURE); } t1 = t_read() - t1; t2 += t1; #ifdef LTC_PROFILE t2 <<= 2; break; #endif if (y < 3) { rsa_free(&key); } } t2 >>= 2; fprintf(stderr, "RSA-%lu make_key took %15llu cycles\n", x, t2); t2 = 0; for (y = 0; y < 16; y++) { t_start(); t1 = t_read(); z = sizeof(buf[1]); if ((err = rsa_encrypt_key(buf[0], 32, buf[1], &z, (const unsigned char *)"testprog", 8, &yarrow_prng, find_prng("yarrow"), find_hash("sha1"), &key)) != CRYPT_OK) { fprintf(stderr, "\n\nrsa_encrypt_key says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK)); exit(EXIT_FAILURE); } t1 = t_read() - t1; t2 += t1; #ifdef LTC_PROFILE t2 <<= 4; break; #endif } t2 >>= 4; fprintf(stderr, "RSA-%lu encrypt_key took %15llu cycles\n", x, t2); t2 = 0; for (y = 0; y < 2048; y++) { t_start(); t1 = t_read(); zzz = sizeof(buf[0]); if ((err = rsa_decrypt_key(buf[1], z, buf[0], &zzz, (const unsigned char *)"testprog", 8, find_hash("sha1"), &zz, &key)) != CRYPT_OK) { fprintf(stderr, "\n\nrsa_decrypt_key says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK)); exit(EXIT_FAILURE); } t1 = t_read() - t1; t2 += t1; #ifdef LTC_PROFILE t2 <<= 11; break; #endif } t2 >>= 11; fprintf(stderr, "RSA-%lu decrypt_key took %15llu cycles\n", x, t2); t2 = 0; for (y = 0; y < 256; y++) { t_start(); t1 = t_read(); z = sizeof(buf[1]); if ((err = rsa_sign_hash(buf[0], 20, buf[1], &z, &yarrow_prng, find_prng("yarrow"), find_hash("sha1"), 8, &key)) != CRYPT_OK) { fprintf(stderr, "\n\nrsa_sign_hash says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK)); exit(EXIT_FAILURE); } t1 = t_read() - t1; t2 += t1; #ifdef LTC_PROFILE t2 <<= 8; break; #endif } t2 >>= 8; fprintf(stderr, "RSA-%lu sign_hash took %15llu cycles\n", x, t2); t2 = 0; for (y = 0; y < 2048; y++) { t_start(); t1 = t_read(); if ((err = rsa_verify_hash(buf[1], z, buf[0], 20, find_hash("sha1"), 8, &stat, &key)) != CRYPT_OK) { fprintf(stderr, "\n\nrsa_verify_hash says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK)); exit(EXIT_FAILURE); } if (stat == 0) { fprintf(stderr, "\n\nrsa_verify_hash for RSA-%lu failed to verify signature(%lu)\n", x, y); exit(EXIT_FAILURE); } t1 = t_read() - t1; t2 += t1; #ifdef LTC_PROFILE t2 <<= 11; break; #endif } t2 >>= 11; fprintf(stderr, "RSA-%lu verify_hash took %15llu cycles\n", x, t2); fprintf(stderr, "\n\n"); rsa_free(&key); } } #else void time_rsa(void) { fprintf(stderr, "NO RSA\n"); } #endif #ifdef MKAT /* time various KAT operations */ void time_katja(void) { katja_key key; ulong64 t1, t2; unsigned char buf[2][4096]; unsigned long x, y, z, zzz; int err, zz; for (x = 1024; x <= 2048; x += 256) { t2 = 0; for (y = 0; y < 4; y++) { t_start(); t1 = t_read(); if ((err = katja_make_key(&yarrow_prng, find_prng("yarrow"), x/8, &key)) != CRYPT_OK) { fprintf(stderr, "\n\nkatja_make_key says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK)); exit(EXIT_FAILURE); } t1 = t_read() - t1; t2 += t1; if (y < 3) { katja_free(&key); } } t2 >>= 2; fprintf(stderr, "Katja-%lu make_key took %15llu cycles\n", x, t2); t2 = 0; for (y = 0; y < 16; y++) { t_start(); t1 = t_read(); z = sizeof(buf[1]); if ((err = katja_encrypt_key(buf[0], 32, buf[1], &z, "testprog", 8, &yarrow_prng, find_prng("yarrow"), find_hash("sha1"), &key)) != CRYPT_OK) { fprintf(stderr, "\n\nkatja_encrypt_key says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK)); exit(EXIT_FAILURE); } t1 = t_read() - t1; t2 += t1; } t2 >>= 4; fprintf(stderr, "Katja-%lu encrypt_key took %15llu cycles\n", x, t2); t2 = 0; for (y = 0; y < 2048; y++) { t_start(); t1 = t_read(); zzz = sizeof(buf[0]); if ((err = katja_decrypt_key(buf[1], z, buf[0], &zzz, "testprog", 8, find_hash("sha1"), &zz, &key)) != CRYPT_OK) { fprintf(stderr, "\n\nkatja_decrypt_key says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK)); exit(EXIT_FAILURE); } t1 = t_read() - t1; t2 += t1; } t2 >>= 11; fprintf(stderr, "Katja-%lu decrypt_key took %15llu cycles\n", x, t2); katja_free(&key); } } #else void time_katja(void) { fprintf(stderr, "NO Katja\n"); } #endif #ifdef MECC /* time various ECC operations */ void time_ecc(void) { ecc_key key; ulong64 t1, t2; unsigned char buf[2][256]; unsigned long i, w, x, y, z; int err, stat; static unsigned long sizes[] = { #ifdef ECC112 112/8, #endif #ifdef ECC128 128/8, #endif #ifdef ECC160 160/8, #endif #ifdef ECC192 192/8, #endif #ifdef ECC224 224/8, #endif #ifdef ECC256 256/8, #endif #ifdef ECC384 384/8, #endif #ifdef ECC521 521/8, #endif 100000}; for (x = sizes[i=0]; x < 100000; x = sizes[++i]) { t2 = 0; for (y = 0; y < 256; y++) { t_start(); t1 = t_read(); if ((err = ecc_make_key(&yarrow_prng, find_prng("yarrow"), x, &key)) != CRYPT_OK) { fprintf(stderr, "\n\necc_make_key says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK)); exit(EXIT_FAILURE); } t1 = t_read() - t1; t2 += t1; #ifdef LTC_PROFILE t2 <<= 8; break; #endif if (y < 255) { ecc_free(&key); } } t2 >>= 8; fprintf(stderr, "ECC-%lu make_key took %15llu cycles\n", x*8, t2); t2 = 0; for (y = 0; y < 256; y++) { t_start(); t1 = t_read(); z = sizeof(buf[1]); if ((err = ecc_encrypt_key(buf[0], 20, buf[1], &z, &yarrow_prng, find_prng("yarrow"), find_hash("sha1"), &key)) != CRYPT_OK) { fprintf(stderr, "\n\necc_encrypt_key says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK)); exit(EXIT_FAILURE); } t1 = t_read() - t1; t2 += t1; #ifdef LTC_PROFILE t2 <<= 8; break; #endif } t2 >>= 8; fprintf(stderr, "ECC-%lu encrypt_key took %15llu cycles\n", x*8, t2); t2 = 0; for (y = 0; y < 256; y++) { t_start(); t1 = t_read(); w = 20; if ((err = ecc_decrypt_key(buf[1], z, buf[0], &w, &key)) != CRYPT_OK) { fprintf(stderr, "\n\necc_decrypt_key says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK)); exit(EXIT_FAILURE); } t1 = t_read() - t1; t2 += t1; #ifdef LTC_PROFILE t2 <<= 8; break; #endif } t2 >>= 8; fprintf(stderr, "ECC-%lu decrypt_key took %15llu cycles\n", x*8, t2); t2 = 0; for (y = 0; y < 256; y++) { t_start(); t1 = t_read(); z = sizeof(buf[1]); if ((err = ecc_sign_hash(buf[0], 20, buf[1], &z, &yarrow_prng, find_prng("yarrow"), &key)) != CRYPT_OK) { fprintf(stderr, "\n\necc_sign_hash says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK)); exit(EXIT_FAILURE); } t1 = t_read() - t1; t2 += t1; #ifdef LTC_PROFILE t2 <<= 8; break; #endif } t2 >>= 8; fprintf(stderr, "ECC-%lu sign_hash took %15llu cycles\n", x*8, t2); t2 = 0; for (y = 0; y < 256; y++) { t_start(); t1 = t_read(); if ((err = ecc_verify_hash(buf[1], z, buf[0], 20, &stat, &key)) != CRYPT_OK) { fprintf(stderr, "\n\necc_verify_hash says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK)); exit(EXIT_FAILURE); } if (stat == 0) { fprintf(stderr, "\n\necc_verify_hash for ECC-%lu failed to verify signature(%lu)\n", x*8, y); exit(EXIT_FAILURE); } t1 = t_read() - t1; t2 += t1; #ifdef LTC_PROFILE t2 <<= 8; break; #endif } t2 >>= 8; fprintf(stderr, "ECC-%lu verify_hash took %15llu cycles\n", x*8, t2); fprintf(stderr, "\n\n"); ecc_free(&key); } } #else void time_ecc(void) { fprintf(stderr, "NO ECC\n"); } #endif void time_macs_(unsigned long MAC_SIZE) { unsigned char *buf, key[16], tag[16]; ulong64 t1, t2; unsigned long x, z; int err, cipher_idx, hash_idx; fprintf(stderr, "\nMAC Timings (cycles/byte on %luKB blocks):\n", MAC_SIZE); buf = XMALLOC(MAC_SIZE*1024); if (buf == NULL) { fprintf(stderr, "\n\nout of heap yo\n\n"); exit(EXIT_FAILURE); } cipher_idx = find_cipher("aes"); hash_idx = find_hash("sha1"); if (cipher_idx == -1 || hash_idx == -1) { fprintf(stderr, "Warning the MAC tests requires AES and SHA1 to operate... so sorry\n"); return; } yarrow_read(buf, MAC_SIZE*1024, &yarrow_prng); yarrow_read(key, 16, &yarrow_prng); #ifdef LTC_OMAC t2 = -1; for (x = 0; x < 10000; x++) { t_start(); t1 = t_read(); z = 16; if ((err = omac_memory(cipher_idx, key, 16, buf, MAC_SIZE*1024, tag, &z)) != CRYPT_OK) { fprintf(stderr, "\n\nomac error... %s\n", error_to_string(err)); exit(EXIT_FAILURE); } t1 = t_read() - t1; if (t1 < t2) t2 = t1; } fprintf(stderr, "OMAC-%s\t\t%9llu\n", cipher_descriptor[cipher_idx].name, t2/(ulong64)(MAC_SIZE*1024)); #endif #ifdef LTC_XCBC t2 = -1; for (x = 0; x < 10000; x++) { t_start(); t1 = t_read(); z = 16; if ((err = xcbc_memory(cipher_idx, key, 16, buf, MAC_SIZE*1024, tag, &z)) != CRYPT_OK) { fprintf(stderr, "\n\nxcbc error... %s\n", error_to_string(err)); exit(EXIT_FAILURE); } t1 = t_read() - t1; if (t1 < t2) t2 = t1; } fprintf(stderr, "XCBC-%s\t\t%9llu\n", cipher_descriptor[cipher_idx].name, t2/(ulong64)(MAC_SIZE*1024)); #endif #ifdef LTC_F9_MODE t2 = -1; for (x = 0; x < 10000; x++) { t_start(); t1 = t_read(); z = 16; if ((err = f9_memory(cipher_idx, key, 16, buf, MAC_SIZE*1024, tag, &z)) != CRYPT_OK) { fprintf(stderr, "\n\nF9 error... %s\n", error_to_string(err)); exit(EXIT_FAILURE); } t1 = t_read() - t1; if (t1 < t2) t2 = t1; } fprintf(stderr, "F9-%s\t\t\t%9llu\n", cipher_descriptor[cipher_idx].name, t2/(ulong64)(MAC_SIZE*1024)); #endif #ifdef LTC_PMAC t2 = -1; for (x = 0; x < 10000; x++) { t_start(); t1 = t_read(); z = 16; if ((err = pmac_memory(cipher_idx, key, 16, buf, MAC_SIZE*1024, tag, &z)) != CRYPT_OK) { fprintf(stderr, "\n\npmac error... %s\n", error_to_string(err)); exit(EXIT_FAILURE); } t1 = t_read() - t1; if (t1 < t2) t2 = t1; } fprintf(stderr, "PMAC-AES\t\t%9llu\n", t2/(ulong64)(MAC_SIZE*1024)); #endif #ifdef PELICAN t2 = -1; for (x = 0; x < 10000; x++) { t_start(); t1 = t_read(); z = 16; if ((err = pelican_memory(key, 16, buf, MAC_SIZE*1024, tag)) != CRYPT_OK) { fprintf(stderr, "\n\npelican error... %s\n", error_to_string(err)); exit(EXIT_FAILURE); } t1 = t_read() - t1; if (t1 < t2) t2 = t1; } fprintf(stderr, "PELICAN \t\t%9llu\n", t2/(ulong64)(MAC_SIZE*1024)); #endif #ifdef LTC_HMAC t2 = -1; for (x = 0; x < 10000; x++) { t_start(); t1 = t_read(); z = 16; if ((err = hmac_memory(hash_idx, key, 16, buf, MAC_SIZE*1024, tag, &z)) != CRYPT_OK) { fprintf(stderr, "\n\nhmac error... %s\n", error_to_string(err)); exit(EXIT_FAILURE); } t1 = t_read() - t1; if (t1 < t2) t2 = t1; } fprintf(stderr, "HMAC-%s\t\t%9llu\n", hash_descriptor[hash_idx].name, t2/(ulong64)(MAC_SIZE*1024)); #endif XFREE(buf); } void time_macs(void) { time_macs_(1); time_macs_(4); time_macs_(32); } void time_encmacs_(unsigned long MAC_SIZE) { unsigned char *buf, IV[16], key[16], tag[16]; ulong64 t1, t2; unsigned long x, z; int err, cipher_idx; symmetric_key skey; fprintf(stderr, "\nENC+MAC Timings (zero byte AAD, 16 byte IV, cycles/byte on %luKB blocks):\n", MAC_SIZE); buf = XMALLOC(MAC_SIZE*1024); if (buf == NULL) { fprintf(stderr, "\n\nout of heap yo\n\n"); exit(EXIT_FAILURE); } cipher_idx = find_cipher("aes"); yarrow_read(buf, MAC_SIZE*1024, &yarrow_prng); yarrow_read(key, 16, &yarrow_prng); yarrow_read(IV, 16, &yarrow_prng); #ifdef EAX_MODE t2 = -1; for (x = 0; x < 10000; x++) { t_start(); t1 = t_read(); z = 16; if ((err = eax_encrypt_authenticate_memory(cipher_idx, key, 16, IV, 16, NULL, 0, buf, MAC_SIZE*1024, buf, tag, &z)) != CRYPT_OK) { fprintf(stderr, "\nEAX error... %s\n", error_to_string(err)); exit(EXIT_FAILURE); } t1 = t_read() - t1; if (t1 < t2) t2 = t1; } fprintf(stderr, "EAX \t\t\t%9llu\n", t2/(ulong64)(MAC_SIZE*1024)); #endif #ifdef OCB_MODE t2 = -1; for (x = 0; x < 10000; x++) { t_start(); t1 = t_read(); z = 16; if ((err = ocb_encrypt_authenticate_memory(cipher_idx, key, 16, IV, buf, MAC_SIZE*1024, buf, tag, &z)) != CRYPT_OK) { fprintf(stderr, "\nOCB error... %s\n", error_to_string(err)); exit(EXIT_FAILURE); } t1 = t_read() - t1; if (t1 < t2) t2 = t1; } fprintf(stderr, "OCB \t\t\t%9llu\n", t2/(ulong64)(MAC_SIZE*1024)); #endif #ifdef CCM_MODE t2 = -1; for (x = 0; x < 10000; x++) { t_start(); t1 = t_read(); z = 16; if ((err = ccm_memory(cipher_idx, key, 16, NULL, IV, 16, NULL, 0, buf, MAC_SIZE*1024, buf, tag, &z, CCM_ENCRYPT)) != CRYPT_OK) { fprintf(stderr, "\nCCM error... %s\n", error_to_string(err)); exit(EXIT_FAILURE); } t1 = t_read() - t1; if (t1 < t2) t2 = t1; } fprintf(stderr, "CCM (no-precomp) \t%9llu\n", t2/(ulong64)(MAC_SIZE*1024)); cipher_descriptor[cipher_idx].setup(key, 16, 0, &skey); t2 = -1; for (x = 0; x < 10000; x++) { t_start(); t1 = t_read(); z = 16; if ((err = ccm_memory(cipher_idx, key, 16, &skey, IV, 16, NULL, 0, buf, MAC_SIZE*1024, buf, tag, &z, CCM_ENCRYPT)) != CRYPT_OK) { fprintf(stderr, "\nCCM error... %s\n", error_to_string(err)); exit(EXIT_FAILURE); } t1 = t_read() - t1; if (t1 < t2) t2 = t1; } fprintf(stderr, "CCM (precomp) \t\t%9llu\n", t2/(ulong64)(MAC_SIZE*1024)); cipher_descriptor[cipher_idx].done(&skey); #endif #ifdef GCM_MODE t2 = -1; for (x = 0; x < 100; x++) { t_start(); t1 = t_read(); z = 16; if ((err = gcm_memory(cipher_idx, key, 16, IV, 16, NULL, 0, buf, MAC_SIZE*1024, buf, tag, &z, GCM_ENCRYPT)) != CRYPT_OK) { fprintf(stderr, "\nGCM error... %s\n", error_to_string(err)); exit(EXIT_FAILURE); } t1 = t_read() - t1; if (t1 < t2) t2 = t1; } fprintf(stderr, "GCM (no-precomp)\t%9llu\n", t2/(ulong64)(MAC_SIZE*1024)); { gcm_state gcm #ifdef GCM_TABLES_SSE2 __attribute__ ((aligned (16))) #endif ; if ((err = gcm_init(&gcm, cipher_idx, key, 16)) != CRYPT_OK) { fprintf(stderr, "gcm_init: %s\n", error_to_string(err)); exit(EXIT_FAILURE); } t2 = -1; for (x = 0; x < 10000; x++) { t_start(); t1 = t_read(); z = 16; if ((err = gcm_reset(&gcm)) != CRYPT_OK) { fprintf(stderr, "\nGCM error[%d]... %s\n", __LINE__, error_to_string(err)); exit(EXIT_FAILURE); } if ((err = gcm_add_iv(&gcm, IV, 16)) != CRYPT_OK) { fprintf(stderr, "\nGCM error[%d]... %s\n", __LINE__, error_to_string(err)); exit(EXIT_FAILURE); } if ((err = gcm_add_aad(&gcm, NULL, 0)) != CRYPT_OK) { fprintf(stderr, "\nGCM error[%d]... %s\n", __LINE__, error_to_string(err)); exit(EXIT_FAILURE); } if ((err = gcm_process(&gcm, buf, MAC_SIZE*1024, buf, GCM_ENCRYPT)) != CRYPT_OK) { fprintf(stderr, "\nGCM error[%d]... %s\n", __LINE__, error_to_string(err)); exit(EXIT_FAILURE); } if ((err = gcm_done(&gcm, tag, &z)) != CRYPT_OK) { fprintf(stderr, "\nGCM error[%d]... %s\n", __LINE__, error_to_string(err)); exit(EXIT_FAILURE); } t1 = t_read() - t1; if (t1 < t2) t2 = t1; } fprintf(stderr, "GCM (precomp)\t\t%9llu\n", t2/(ulong64)(MAC_SIZE*1024)); } #endif } void time_encmacs(void) { time_encmacs_(1); time_encmacs_(4); time_encmacs_(32); } /* $Source: /cvs/libtom/libtomcrypt/testprof/x86_prof.c,v $ */ /* $Revision: 1.51 $ */ /* $Date: 2006/11/21 00:10:18 $ */