Mercurial > dropbear
view libtommath/bn_s_mp_exptmod.c @ 607:aa2f51a6b81d DROPBEAR_0.53.1
Update changelog for 0.53.1
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Wed, 02 Mar 2011 13:23:27 +0000 |
parents | 5ff8218bcee9 |
children | 60fc6476e044 |
line wrap: on
line source
#include <tommath.h> #ifdef BN_S_MP_EXPTMOD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, [email protected], http://math.libtomcrypt.com */ #ifdef MP_LOW_MEM #define TAB_SIZE 32 #else #define TAB_SIZE 256 #endif int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode) { mp_int M[TAB_SIZE], res, mu; mp_digit buf; int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize; int (*redux)(mp_int*,mp_int*,mp_int*); /* find window size */ x = mp_count_bits (X); if (x <= 7) { winsize = 2; } else if (x <= 36) { winsize = 3; } else if (x <= 140) { winsize = 4; } else if (x <= 450) { winsize = 5; } else if (x <= 1303) { winsize = 6; } else if (x <= 3529) { winsize = 7; } else { winsize = 8; } #ifdef MP_LOW_MEM if (winsize > 5) { winsize = 5; } #endif /* init M array */ /* init first cell */ if ((err = mp_init(&M[1])) != MP_OKAY) { return err; } /* now init the second half of the array */ for (x = 1<<(winsize-1); x < (1 << winsize); x++) { if ((err = mp_init(&M[x])) != MP_OKAY) { for (y = 1<<(winsize-1); y < x; y++) { mp_clear (&M[y]); } mp_clear(&M[1]); return err; } } /* create mu, used for Barrett reduction */ if ((err = mp_init (&mu)) != MP_OKAY) { goto LBL_M; } if (redmode == 0) { if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) { goto LBL_MU; } redux = mp_reduce; } else { if ((err = mp_reduce_2k_setup_l (P, &mu)) != MP_OKAY) { goto LBL_MU; } redux = mp_reduce_2k_l; } /* create M table * * The M table contains powers of the base, * e.g. M[x] = G**x mod P * * The first half of the table is not * computed though accept for M[0] and M[1] */ if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) { goto LBL_MU; } /* compute the value at M[1<<(winsize-1)] by squaring * M[1] (winsize-1) times */ if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) { goto LBL_MU; } for (x = 0; x < (winsize - 1); x++) { /* square it */ if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) { goto LBL_MU; } /* reduce modulo P */ if ((err = redux (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) { goto LBL_MU; } } /* create upper table, that is M[x] = M[x-1] * M[1] (mod P) * for x = (2**(winsize - 1) + 1) to (2**winsize - 1) */ for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) { if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) { goto LBL_MU; } if ((err = redux (&M[x], P, &mu)) != MP_OKAY) { goto LBL_MU; } } /* setup result */ if ((err = mp_init (&res)) != MP_OKAY) { goto LBL_MU; } mp_set (&res, 1); /* set initial mode and bit cnt */ mode = 0; bitcnt = 1; buf = 0; digidx = X->used - 1; bitcpy = 0; bitbuf = 0; for (;;) { /* grab next digit as required */ if (--bitcnt == 0) { /* if digidx == -1 we are out of digits */ if (digidx == -1) { break; } /* read next digit and reset the bitcnt */ buf = X->dp[digidx--]; bitcnt = (int) DIGIT_BIT; } /* grab the next msb from the exponent */ y = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1; buf <<= (mp_digit)1; /* if the bit is zero and mode == 0 then we ignore it * These represent the leading zero bits before the first 1 bit * in the exponent. Technically this opt is not required but it * does lower the # of trivial squaring/reductions used */ if (mode == 0 && y == 0) { continue; } /* if the bit is zero and mode == 1 then we square */ if (mode == 1 && y == 0) { if ((err = mp_sqr (&res, &res)) != MP_OKAY) { goto LBL_RES; } if ((err = redux (&res, P, &mu)) != MP_OKAY) { goto LBL_RES; } continue; } /* else we add it to the window */ bitbuf |= (y << (winsize - ++bitcpy)); mode = 2; if (bitcpy == winsize) { /* ok window is filled so square as required and multiply */ /* square first */ for (x = 0; x < winsize; x++) { if ((err = mp_sqr (&res, &res)) != MP_OKAY) { goto LBL_RES; } if ((err = redux (&res, P, &mu)) != MP_OKAY) { goto LBL_RES; } } /* then multiply */ if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) { goto LBL_RES; } if ((err = redux (&res, P, &mu)) != MP_OKAY) { goto LBL_RES; } /* empty window and reset */ bitcpy = 0; bitbuf = 0; mode = 1; } } /* if bits remain then square/multiply */ if (mode == 2 && bitcpy > 0) { /* square then multiply if the bit is set */ for (x = 0; x < bitcpy; x++) { if ((err = mp_sqr (&res, &res)) != MP_OKAY) { goto LBL_RES; } if ((err = redux (&res, P, &mu)) != MP_OKAY) { goto LBL_RES; } bitbuf <<= 1; if ((bitbuf & (1 << winsize)) != 0) { /* then multiply */ if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) { goto LBL_RES; } if ((err = redux (&res, P, &mu)) != MP_OKAY) { goto LBL_RES; } } } } mp_exch (&res, Y); err = MP_OKAY; LBL_RES:mp_clear (&res); LBL_MU:mp_clear (&mu); LBL_M: mp_clear(&M[1]); for (x = 1<<(winsize-1); x < (1 << winsize); x++) { mp_clear (&M[x]); } return err; } #endif /* $Source: /cvs/libtom/libtommath/bn_s_mp_exptmod.c,v $ */ /* $Revision: 1.4 $ */ /* $Date: 2006/03/31 14:18:44 $ */