Mercurial > dropbear
view libtommath/bn_mp_montgomery_reduce.c @ 1675:ae41624c2198
split signkey_type and signature_type for RSA sha1 vs sha256
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Sun, 17 May 2020 23:58:31 +0800 |
parents | f52919ffd3b1 |
children | 1051e4eea25a |
line wrap: on
line source
#include "tommath_private.h" #ifdef BN_MP_MONTGOMERY_REDUCE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* computes xR**-1 == x (mod N) via Montgomery Reduction */ int mp_montgomery_reduce(mp_int *x, const mp_int *n, mp_digit rho) { int ix, res, digs; mp_digit mu; /* can the fast reduction [comba] method be used? * * Note that unlike in mul you're safely allowed *less* * than the available columns [255 per default] since carries * are fixed up in the inner loop. */ digs = (n->used * 2) + 1; if ((digs < (int)MP_WARRAY) && (x->used <= (int)MP_WARRAY) && (n->used < (int)(1u << (((size_t)CHAR_BIT * sizeof(mp_word)) - (2u * (size_t)DIGIT_BIT))))) { return fast_mp_montgomery_reduce(x, n, rho); } /* grow the input as required */ if (x->alloc < digs) { if ((res = mp_grow(x, digs)) != MP_OKAY) { return res; } } x->used = digs; for (ix = 0; ix < n->used; ix++) { /* mu = ai * rho mod b * * The value of rho must be precalculated via * montgomery_setup() such that * it equals -1/n0 mod b this allows the * following inner loop to reduce the * input one digit at a time */ mu = (mp_digit)(((mp_word)x->dp[ix] * (mp_word)rho) & MP_MASK); /* a = a + mu * m * b**i */ { int iy; mp_digit *tmpn, *tmpx, u; mp_word r; /* alias for digits of the modulus */ tmpn = n->dp; /* alias for the digits of x [the input] */ tmpx = x->dp + ix; /* set the carry to zero */ u = 0; /* Multiply and add in place */ for (iy = 0; iy < n->used; iy++) { /* compute product and sum */ r = ((mp_word)mu * (mp_word)*tmpn++) + (mp_word)u + (mp_word)*tmpx; /* get carry */ u = (mp_digit)(r >> (mp_word)DIGIT_BIT); /* fix digit */ *tmpx++ = (mp_digit)(r & (mp_word)MP_MASK); } /* At this point the ix'th digit of x should be zero */ /* propagate carries upwards as required*/ while (u != 0u) { *tmpx += u; u = *tmpx >> DIGIT_BIT; *tmpx++ &= MP_MASK; } } } /* at this point the n.used'th least * significant digits of x are all zero * which means we can shift x to the * right by n.used digits and the * residue is unchanged. */ /* x = x/b**n.used */ mp_clamp(x); mp_rshd(x, n->used); /* if x >= n then x = x - n */ if (mp_cmp_mag(x, n) != MP_LT) { return s_mp_sub(x, n, x); } return MP_OKAY; } #endif /* ref: HEAD -> master, tag: v1.1.0 */ /* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ /* commit time: 2019-01-28 20:32:32 +0100 */